4.若方程||x|-a2|-a=0有四個(gè)不同的實(shí)根,則實(shí)數(shù)a的取值范圍為(1,+∞).

分析 根據(jù)絕對(duì)值的意義,結(jié)合方程||x|-a2|-a=0有四個(gè)不同的實(shí)根,即可求出實(shí)數(shù)a的取值范圍.

解答 解:方程||x|-a2|-a=0,可得方程||x|-a2|=a,∴a>0,
∴|x|=a2±a,
∵方程||x|-a2|-a=0有四個(gè)不同的實(shí)根,
∴a2+a>0且a2-a>0,∴a>1,
故答案為(1,+∞).

點(diǎn)評(píng) 本題考查實(shí)數(shù)a的取值范圍,考查絕對(duì)值的意義,正確轉(zhuǎn)化是關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.運(yùn)行程序框圖,若輸出的S的值為$\frac{{{2^9}-1}}{2^9}$,則判斷框內(nèi)的整數(shù)a為10.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.如圖是一個(gè)程序框圖,則輸出的S的值是( 。
A.18B.20C.87D.90

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知實(shí)數(shù)集R為全集,A={x|log2(3-x)≤2},B={x||x-3|≤2},
(1)求A,B;
(2)求∁R(A∩B).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.平面向量$\overrightarrow a$與$\overrightarrow b$的夾角為90°,$\overrightarrow a=({2,0}),|{\overrightarrow b}|=1$則$|{\overrightarrow a+2\overrightarrow b}|$=2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.某市文化部門(mén)為了了解本市市民對(duì)當(dāng)?shù)氐胤綉蚯欠裣矏?ài),從15-65歲的人群中隨機(jī)抽樣了n人,得到如下的統(tǒng)計(jì)表和頻率分布直方圖.
(Ⅰ)寫(xiě)出其中的a、b及x和y的值;
(Ⅱ)若從第1,2,3組回答喜歡地方戲曲的人中用分層抽樣的方法抽取6人,求這三組每組分別抽取多少人?
(Ⅲ)在(Ⅱ)抽取的6人中隨機(jī)抽取2人,用X表示其中是第3組的人數(shù),求X的分布列和期望.
組號(hào)分組喜愛(ài)人數(shù)喜愛(ài)人數(shù)
占本組的頻率
第1組[15,25)a0.10
第2組[25,35)b0.20
第3組[35,45)60.40
第4組[45,55)120.60
第5組[55,65]c0.80

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知$|\overrightarrow a|=1,|\overrightarrow b|=2$且$<\vec a,\vec b>=120°$則$|2\overrightarrow a+\overrightarrow b|$等于( 。
A.4B.12C.2D.2$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.已知在等比數(shù)列{an}中,a5-a1=15,a4-a2=6,則公比q的所有可能的值為$\frac{1}{2}$或2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.若?x∈D,總有f(x)<F(x)<g(x),則稱(chēng)F(x)為f(x)與g(x)在D上的一個(gè)“嚴(yán)格分界函數(shù)”.
(1)求證:y=ex是y=1+x和y=1+x+$\frac{{x}^{2}}{2}$在(-1,0)上的一個(gè)“嚴(yán)格分界函數(shù)”;
(2)函數(shù)h(x)=2ex+$\frac{1}{1+x}$-2,若存在最大整數(shù)M使得h(x)>$\frac{M}{10}$在X∈(-1,0)恒成立,求M的值.(e=2.718…是自然對(duì)數(shù)的底數(shù),$\sqrt{2}$≈1.414,${2}^{\frac{1}{3}}$≈1.260)

查看答案和解析>>

同步練習(xí)冊(cè)答案