【題目】已知在△ABC中, .
(1)求角B的大。
(2)若a+c=1,求b的取值范圍.
【答案】
(1)解:cosC+(cosA﹣ sinA)cosB=0,
∴﹣cos(A+B)+cosAcosB﹣ sinAcosB=0,
化為sinAsinB﹣ sinAcosB=0,
∵sinA≠0,
∴sinB﹣ cosB=0,
∵cosB≠0,
∴tanB= ,
∵B∈(0,π).
解得B= .
(2)解:∵a+c=1,
∴1≥2 ,
化為ac≤ .
由余弦定理可得:b2=a2+c2﹣2accosB=(a+c)2﹣3ac=1﹣3ac≥ ,當(dāng)且僅當(dāng)a=c= 時(shí)取等號(hào).
∴b≥ .
又b<a+c=1.
∴b的取值范圍是[ ,1).
【解析】(1)由cosC+(cosA﹣ sinA)cosB=0,可得﹣cos(A+B)+cosAcosB﹣ sinAcosB=0,可化為tanB= ,即可得出.(2)由a+c=1,利用基本不等式的性質(zhì)化為ac≤ .由余弦定理可得:b2=a2+c2﹣2accosB=(a+c)2﹣3ac=1﹣3ac,利用基本不等式的性質(zhì)即可得出.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用兩角和與差的余弦公式和兩角和與差的正弦公式的相關(guān)知識(shí)可以得到問題的答案,需要掌握兩角和與差的余弦公式:;兩角和與差的正弦公式:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,橢圓長(zhǎng)軸端點(diǎn)為A,B,O為橢圓中心,F(xiàn)為橢圓的右焦點(diǎn),且 , .
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)記橢圓的上頂點(diǎn)為M,直線l交橢圓于P,Q兩點(diǎn),問:是否存在直線l,使點(diǎn)F恰為△PQM的垂心?若存在,求出直線l的方程;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為得到函數(shù)y=sin(2x﹣ )的圖象,只需將函數(shù)y=sin2x的圖象( )
A.向左平移 個(gè)長(zhǎng)度單位
B.向右平移 個(gè)長(zhǎng)度單位
C.向左平移 個(gè)長(zhǎng)度單位
D.向右平移 個(gè)長(zhǎng)度單位
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知a∈R,f(x)=aln(x﹣1)+x,f′(2)=2
(1)求a的值,并求曲線y=f(x)在點(diǎn)(2,f(2))處的切線方程y=g(x);
(2)設(shè)h(x)=mf′(x)+g(x)+1,若對(duì)任意的x∈[2,4],h(x)>0,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在正方體ABCD﹣A1B1C1D1中,E,F(xiàn)分別為CC1和BB1的中點(diǎn),則異面直線AE與D1F所成角的余弦值為( )
A.0
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某化工廠擬建一個(gè)下部為圓柱,上部為半球的容器(如圖,圓柱高為h,半徑為r,不計(jì)厚度,單位:米),按計(jì)劃容積為72π立方米,且h≥2r,假設(shè)其建造費(fèi)用僅與表面積有關(guān)(圓柱底部不計(jì)),已知圓柱部分每平方米的費(fèi)用為2千元,半球部分每平方米4千元,設(shè)該容器的建造費(fèi)用為y千元. (Ⅰ)求y關(guān)于r的函數(shù)關(guān)系,并求其定義域;
(Ⅱ)求建造費(fèi)用最小時(shí)的r.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓P過A(﹣8,0),B(2,0),C(0,4)三點(diǎn),圓Q:x2+y2﹣2ay+a2﹣4=0.
(1)求圓P的方程;
(2)如果圓P和圓Q相外切,求實(shí)數(shù)a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且bcosA= asinB.
(1)求角A的大;
(2)若a=1,求△ABC面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知首項(xiàng)為1的數(shù)列{an}的前n項(xiàng)和為Sn , 若點(diǎn)(Sn﹣1 , an)(n≥2)在函數(shù)y=3x+4的圖象上. (Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若bn=log2 ,且bn=2n+1cn , 其中n∈N* , 求數(shù)列{cn}的前前n項(xiàng)和Tn .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com