已知命題p:?x∈R,ax2+ax+1>0及命題q:?x0∈R,x02-x0+a=0,若p∨q為真命題,p∧q為假命題,求實數(shù)a的取值范圍.
考點:復合命題的真假
專題:簡易邏輯
分析:題p:?x∈R,ax2+ax+1>0,對a分類討論:當a=0時,直接驗證;當a≠0時,可得
a>0
△=a2-4a<0
.命題q:?x0∈R,x02-x0+a=0,可得△1≥0.由p∨q為真命題,p∧q為假命題,可得命題p與q必然一真一假.解出即可.
解答: 解:命題p:?x∈R,ax2+ax+1>0,當a=0時,1>0成立,因此a=0滿足題意;當a≠0時,可得
a>0
△=a2-4a<0
,解得0<a<4.
綜上可得:0≤a<4.
命題q:?x0∈R,x02-x0+a=0,∴△1=1-4a≥0,解得a≤
1
4

∵p∨q為真命題,p∧q為假命題,
∴命題p與q必然一真一假.
0≤a<4
a>
1
4
a<0或a≥4
a≤
1
4
,
解得a≤0或
1
4
<a<4

∴實數(shù)a的取值范圍是a≤0或
1
4
<a<4
點評:本題考查了一元二次不等式與一元二次方程的解集與判別式的關(guān)系、簡易邏輯的判定,考查了推理能力與計算能力,屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

在△ABC中,a,b,c分別是∠A,∠B,∠C所對的邊,a+c=2b,A-C=
3
.求sinB的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

私家車的尾氣排放是造成霧霾天氣的重要因素之一,因此在生活中我們應該提倡低碳生活,少開私家車,盡量選擇綠色出行方式,為預防霧霾出一份力.為此,很多城市實施了機動車車尾號限行,我市某報社為了解市區(qū)公眾對“車輛限行”的態(tài)度,隨機抽查了50人,將調(diào)查情況進行整理后制成下表:
年齡(歲)[15,25)[25,35)[35,45)[45,55)[55,65)[65,75]
頻數(shù)510151055
贊成人數(shù)469634

(Ⅰ)完成被調(diào)查人員的頻率分布直方圖;
(Ⅱ)若從年齡在[15,25),[25,35)的被調(diào)查者中各隨機選取2人進行追蹤調(diào)查,求恰有2人不贊成的概率;
(Ⅲ)在(Ⅱ)的條件下,再記選中的4人中不贊成“車輛限行”的人數(shù)為ξ,求隨機變量ξ的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知命題p:“?x∈R,2x2+(m-1)x+
1
2
≤0”,命題q:“曲線C1
x2
m2
+
y2
2m+8
=1表示焦點在x軸上的橢圓”.若“p∨q”為真命題,“p∧q”為假命題,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

甲乙兩位學生參加數(shù)學競賽培訓,并根據(jù)成績從中選派一人參加數(shù)學競賽,在培訓期間,進行了5次預賽,據(jù)統(tǒng)計,甲的5次預賽平均成績?yōu)?5,方差為28.6,乙的成績記錄如下:
序號12345
成績8493868478
(Ⅰ)用莖葉圖表示乙的成績,并求乙成績的中位數(shù);
(Ⅱ)根據(jù)預賽成績,你認為選派哪位學生參加更合適?請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=Mcos(ω+φ)(M>0,ω>0)在區(qū)間[a,b]上是增函數(shù),且f(a)=-M,f(b)=M,則g(x)=Msin(ωx+φ)在[a,b]上(  )
A、是增函數(shù)
B、是減函數(shù)
C、可以取得最小值-M
D、可以取得最大值M

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若loga(a+1)<0(a>0,且a≠1),則函數(shù)f(x)=
1
1-ax
的定義域為( 。
A、(-∞,0)
B、(-1,0)
C、(0,+∞)
D、(0,1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

我國城市空氣污染指數(shù)范圍及相應的空氣質(zhì)量類別見下表:

空氣污染指數(shù)空氣質(zhì)量空氣污染指數(shù)空氣質(zhì)量
0--50優(yōu)201--250中度污染
51--100251--300中度重污染
101--150輕微污染>300重污染
151----200輕度污染
我們把某天的空氣污染指數(shù)在0-100時稱作A類天,101--200時稱作B類天,大于200時稱作C類天.
下圖是某市2014年全年監(jiān)測數(shù)據(jù)中隨機抽取的18天數(shù)據(jù)作為樣本,其莖葉圖如下:(百位為莖,十、個位為葉)

(Ⅰ)從這18天中任取3天,求至少含2個A類天的概率;
(Ⅱ)從這18天中任取3天,記X是達到A類或B類天的天數(shù),求X的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知∠A=45°,∠B=75°,b=8,解這個三角形.

查看答案和解析>>

同步練習冊答案