(本題滿分12分) 已知,函數(shù).(1)設曲線在點處的切線為,若與圓相切,求的值;(2)求函數(shù)的單調(diào)區(qū)間;(3)求函數(shù)在[0,1]上的最小值。

(Ⅰ)    (Ⅱ)   


解析:

:(1)依題意有(1分)過點的直線斜率為,所以過點的直線方程為(2分)又已知圓的圓心為,半徑為1

,解得(3分)

(2)時,(5分)

,解得,令,解得

所以的增區(qū)間為,減區(qū)間是(7分)

(3)當,即時,在[0,1]上是減函數(shù)

所以的最小值為(9分)當

上是增函數(shù),在是減函數(shù)所以需要比較兩個值的大小因為,所以∴ 當時最小值為,當時,最小值為,即時,在[0,1]上是增函數(shù)所以最小值為.綜上,當時,為最小值為時,的最小值為 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

( 本題滿分12分 )
已知函數(shù)f(x)=cos4x-2sinxcosx-sin4x
(I)求f(x)的最小正周期;
(II)若x∈[0,
π2
]
,求f(x)的最大值,最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本題滿分12分)已知數(shù)列是首項為,公比的等比數(shù)列,,

,數(shù)列.

(1)求數(shù)列的通項公式;(2)求數(shù)列的前n項和Sn.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年上海市金山區(qū)高三上學期期末考試數(shù)學試卷(解析版) 題型:解答題

(本題滿分12分,第1小題6分,第2小題6分)

已知集合A={x| | xa | < 2,xÎR },B={x|<1,xÎR }.

(1) 求A、B

(2) 若,求實數(shù)a的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年安徽省高三10月月考理科數(shù)學試卷(解析版) 題型:解答題

(本題滿分12分)

設函數(shù)為常數(shù)),且方程有兩個實根為.

(1)求的解析式;

(2)證明:曲線的圖像是一個中心對稱圖形,并求其對稱中心.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年重慶市高三第二次月考文科數(shù)學 題型:解答題

(本題滿分12分,(Ⅰ)小問4分,(Ⅱ)小問6分,(Ⅲ)小問2分.)

如圖所示,直二面角中,四邊形是邊長為的正方形,,上的點,且⊥平面

(Ⅰ)求證:⊥平面

(Ⅱ)求二面角的大;

(Ⅲ)求點到平面的距離.

 

查看答案和解析>>

同步練習冊答案