cos(-2040°)=( 。
A、
1
2
B、-
1
2
C、
3
2
D、-
3
2
考點:運用誘導(dǎo)公式化簡求值
專題:三角函數(shù)的求值
分析:原式先利用偶函數(shù)的性質(zhì)化簡,角度變形后利用誘導(dǎo)公式計算即可得到結(jié)果.
解答: 解:原式=cos2040°=cos(6×360°-120°)=cos120°=-
1
2
,
故選:B.
點評:此題考查了運用誘導(dǎo)公式化簡求值,熟練掌握誘導(dǎo)公式是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

求函數(shù)y=2x-3+
x2-12
的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
-2x+a
2x+1+b
是定義域為R的奇函數(shù),那么a+b=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果tan
α
2
=
1
3
,那么cosα的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=lg(x+2)+
2-2x
的定義域為_
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知復(fù)數(shù)z=1-i(其中i為虛數(shù)單位),則
2i
z
等于(  )
A、1-iB、1+i
C、-1-iD、-1+i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

復(fù)數(shù)z=
-3+i
2+i
的共軛復(fù)數(shù)是( 。
A、-1-iB、2-i
C、-1+iD、2+i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖四棱錐P-ABCD的底面是梯形,BC∥AD,AB=BC=CD=1,AD=2,平面PAC⊥平面ABCD.
(1)求證:AP⊥CD;
(2)當(dāng)PA=PC=
6
2
時,求直線PD與平面PBC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題p:x1和x2是方程x2-mx-2=0的兩個實根,不等式a2-5a-3≥|x1-x2|對任意實數(shù)m∈[-1,1]恒成立;命題q:不等式ax2+2x-1>0有解;若命題p是真命題,命題q是假命題,則a的取值范圍為
 

查看答案和解析>>

同步練習(xí)冊答案