y=cos(2x+
π
3
)的圖象往左平移最少
 
個單位后關(guān)于y軸對稱.
考點(diǎn):函數(shù)y=Asin(ωx+φ)的圖象變換
專題:三角函數(shù)的圖像與性質(zhì)
分析:根據(jù)三角函數(shù)的平移法則,結(jié)合余弦函數(shù)的圖象與性質(zhì),進(jìn)行解答問題.
解答: 解:∵函數(shù)y=cos(2x+
π
3
)的圖象往左平移
π
3
個單位時,
函數(shù)解析式為y=cos(2(x+
π
3
)+
π
3
)=cos(2x+π)=-cos2x,
它的圖象關(guān)于y對稱.
故答案為:
π
3
點(diǎn)評:本題考查了三角函數(shù)的圖象與性質(zhì)的應(yīng)用問題,解題時應(yīng)根據(jù)平移法則,結(jié)合三角函數(shù)的圖象與性質(zhì),是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知關(guān)于x的不等式x2-(a+
4
a
)x+4>0在[1,+∞)上恒成立,試求參數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某產(chǎn)品的廣告費(fèi)用x與銷售額y的統(tǒng)計數(shù)據(jù)如表:
廣告費(fèi)用x(萬元)42365
銷售額y(萬元)4019296151
(Ⅰ)根據(jù)上表可得求線性回歸方程;(注:y=a+bx,其中b=
x1y1+x2y2+xnyn-n
.
x
.
y
x12+x22+xn2-n
.
x
2
;a=
.
y
-b
.
x

(Ⅱ)據(jù)此模型,估計廣告費(fèi)用為9萬元時銷售額為多少萬元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=x2+bx+c(b,c∈R),若|x|≤2時,f(x)≥0,且f(x)在區(qū)間(2,3]上的最大值為1,則b2+c2的取值范圍為( 。
A、[32,74]
B、[24,32]
C、[36,74]
D、[24,36]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖1,∠ACB=45°,BC=4,過動點(diǎn)A作AD⊥BC,垂足D在線段BC上且異于點(diǎn)B,連接AB,沿AD將△ABD折起,使∠BDC=90°(如圖2所示)

(1)當(dāng)BD的長為多少時,△BCD的體積最大;
(2)當(dāng)△BCD的體積最大時,設(shè)點(diǎn)M為棱AC的中點(diǎn),試求直線BM與CD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直角三角形的面積的定值S,則它的兩直角邊的和的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=x2+3x+2,數(shù)列{an}滿足a1=a,且an+1=f′(an)(n∈N*),則該數(shù)列的通項(xiàng)公式an=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

x<0是
x+1
x
≤-2成立( 。
A、充分但不必要條件
B、必要但不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項(xiàng)和為Sn,若Sn+n=
3
2
an
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù)列{bn}滿足bn=an+λ•(-2)n且數(shù)列{bn}為遞增數(shù)列,求λ的取值范圍;
(Ⅲ)設(shè)數(shù)列{cn}滿足cn=
an
an+1
,求證:
n
3
-
1
8
<c1+c2+…+cn
n
3

查看答案和解析>>

同步練習(xí)冊答案