已知m∈R,函數(shù)f(x)=mx-lnx,g(x)=+lnx.
(1)求g(x)的極小值;
(2)若y=f(x)-g(x)在[1,+∞)上為單調(diào)增函數(shù),求m的取值范圍;
(3)設(shè)h(x)=,若在[1,e)(e是自然對(duì)數(shù)的底數(shù))上至少存在一個(gè)x0,使得f(x0)-g(x0)>h(x0)成立,求m的取值范圍.
解:(1)由題意,,,∴當(dāng)時(shí),;當(dāng)時(shí),,所以,在上是減函數(shù),在上是增函數(shù),故;4分
(2),,由于在內(nèi)為單調(diào)增函數(shù),所以在上恒成立,即在上恒成立,故,所以的取值范圍是.9分
(3)構(gòu)造函數(shù),
當(dāng)時(shí),由得,,,所以在上不存在一個(gè),使得.
當(dāng)時(shí),,因?yàn)?IMG style="vertical-align:middle" SRC="http://thumb.zyjl.cn/pic7/pages/60R0/0151/0022/5e6b415b57d6b7dc451e2931ff1f3fd3/C/Image195.gif" width=48 height=22>,所以,,所以在上恒成立,故在上單調(diào)遞增,,所以要在上存在一個(gè),使得,必須且只需,解得,故的取值范圍是.14分
另法:(Ⅲ)當(dāng)時(shí),.
當(dāng)時(shí),由,得,令,則,所以在上遞減,.
綜上,要在上存在一個(gè),使得,必須且只需.14分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
m-1 |
x |
1 |
2 |
ln2 |
2 |
ln3 |
3 |
ln4 |
4 |
lnn |
n |
n2 |
2(n+1) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com