已知定義域為R的函數(shù)y=f(x),則下列命題正確的是( )
A.若f(x+1)+f(1-x)=0恒成立,則函數(shù)y=f(x)的圖象關(guān)于(1,0)點對稱
B.若f(x-1)=f(1-x)恒成立,則函數(shù)y=f(x)的圖象關(guān)于直線x=1對稱
C.函數(shù)y=-f(x-1)的圖象與函數(shù)y=f(1-x)的圖象關(guān)于原點對稱
D.函數(shù)y=f(x+1)的圖象與函數(shù)y=f(1-x)的圖象關(guān)于y軸對稱
【答案】分析:由f(x+1)=-f(1-x)判斷y=f(x)的圖象的對稱中心是(1,0),則A對、C不對,由f(x-1)=f(1-x)得對稱軸x=0,則B不對;由y=f(x+1)和y=f(1-x)得對稱軸x=1,則D不對.
解答:解:A、由f(x+1)+f(1-x)=0得f(x+1)=-f(1-x),則函數(shù)y=f(x)的圖象關(guān)于(1,0)點對稱,故A正確;
B、由f(x-1)=f(1-x)得,函數(shù)y=f(x)的圖象關(guān)于直線x=0對稱,故B不對;
C、函數(shù)y=-f(x-1)的圖象與函數(shù)y=f(1-x)的圖象關(guān)于點(1,0)對稱,故C不對;
D、函數(shù)y=f(x+1)的圖象與函數(shù)y=f(1-x)的圖象關(guān)于x=1對稱,故D不對.
故選A.
點評:本題考查了函數(shù)圖象的對稱性,根據(jù)關(guān)系式求出對稱中心和對稱軸進行判斷.