已知數(shù)列{an}滿足an=2an-1+1(n≥2)且a1=1,bn=log2(a2n+1+1),cn=
1
b
2
n
-1
(Ⅰ)求證:數(shù)列{an+1}為等比數(shù)列,并求數(shù)列{an}的通項公式;
(Ⅱ)求數(shù)列{cn}的前n項和sn
考點:數(shù)列的求和,數(shù)列遞推式
專題:等差數(shù)列與等比數(shù)列
分析:(Ⅰ)把已知的數(shù)列遞推式an=2an-1+1變形,得到an+1=2(an-1+1)(n≥2),由此得到數(shù)列{an+1}為等比數(shù)列,求其通項公式后可得數(shù)列數(shù)列{an}的通項公式;
(Ⅱ)把(Ⅰ)中求得的通項公式代入bn=log2(a2n+1+1),進一步代入cn=
1
b
2
n
-1,然后由裂項相消法求和.
解答: (Ⅰ)證明:由an=2an-1+1(n≥2),知an+1=2(an-1+1)(n≥2),
又a1+1=2≠0,
∴{an+1}是以2為首項,以2為公比的等比數(shù)列,
an+1=2•2n-1=2n
an=2n-1;
(Ⅱ)解:由(Ⅰ)知bn=log2(a2n+1+1)=2n+1,
cn=
1
b
2
n
-1=
1
4n(n+1)
=
1
4
(
1
n
-
1
n+1
)
,
Sn=
1
4
[(1-
1
2
)+(
1
2
-
1
3
)+…+(
1
n
-
1
n+1
)]
=
1
4
(1-
1
n+1
)=
n
4(n+1)
點評:本題考查了數(shù)列遞推式,考查了等比數(shù)列的確定,訓(xùn)練了裂項相消法求數(shù)列的和,是中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x
1+x2
是定義在(-1,1)上的函數(shù),解不等式f(x-1)+f(x)<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知2sinα+cosα=0 求
2
3
sin2α+
1
4
cos2α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

計算:
(1)(2a
2
3
b
1
2
)(-6a
1
2
b
2
3
)÷(-3a
1
6
b
3
6

(2)(log43+log83)(log32+log92)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題p:?m∈R,m+1≤0,命題q:?x∈R,x2+mx+1>0.若“p∧q”為假命題,則實數(shù)m的取值范圍是( 。
A、(-∞,-2]∪(-1,+∞)
B、[2,+∞)
C、(-∞,-2]∪[2,+∞)
D、[-2,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖1,在Rt△ABC中,∠C=90°,BC=3,AC=6,DE分別為AC、AB上的點,且DE∥BC,DE=2,將△ADE沿DE折起到△A1DE的位置,使A1C⊥CD,如圖2.求證:A1C⊥平面BCDE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題p:
x2
m+3
+
y2
7m-3
=1
表示焦點在x軸的雙曲線,命題q:f(x)=(5-2m)x是增函數(shù),若p或q為真命題,p且q為假命題,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知兩定點F1(-1,0)、F2(1,0),則命題甲:|F1F2|是|PF1|與|PF2|的等差中項,命題乙:動點P的軌跡是橢圓,則甲是乙的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、非充分非必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若方程
3
sinx+cosx=a+1在[0,π]上有根,則a范圍為
 

查看答案和解析>>

同步練習(xí)冊答案