棱長(zhǎng)為a的正方體A1B1C1D1-ABCD中,O為面ABCD的中心.
(1)求證:AC1⊥平面B1CD1;
(2)求四面體OBC1D1的體積;
(3)線段AC上是否存在P點(diǎn)(不與A點(diǎn)重合),使得A1P面CC1D1D?如果存在,請(qǐng)確定P點(diǎn)位置,如果不存在,請(qǐng)說明理由.
(1)證明:由正方體可得AB⊥平面BCC1B1,
∴AB⊥B1C.
由正方形BCC1B1可得B1C⊥BC1
而AB∩BC1=B,∴B1C⊥平面ABC1,
∴B1C⊥AC1
同理可證,CD1⊥AC1,
又CB1∩CD1=C,∴AC1⊥平面B1CD1
(2)∵CC1平面BB1D1D,∴點(diǎn)C1到平面BOD1的距離與點(diǎn)C到此平面的距離相等,
V四面體OBC1D1=VC1-BOD1=VC-BOD1=
1
3
S△BOD1×OC
=
1
3
×
1
2
×
2
a
2
×a×
2
a
2
=
a3
12

(3)由正方體可得平面ABB1A1平面CC1D1D,故過點(diǎn)A1與平面CC1D1D平行的直線只能在平面ABB1A1內(nèi),
因此在線段AC上除了點(diǎn)A外不存在其它點(diǎn)P,使得A1P面CC1D1D.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

半徑為10cm的球被兩個(gè)平行平面所截,兩個(gè)截面圓的面積分別為36πcm2,64πcm2,求這兩個(gè)平行平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

長(zhǎng)方體ABCD-A1B1C1D1中,AB=3,AD=2,AA1=1,則從A點(diǎn)沿表面到C1點(diǎn)的最短距離為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖所示,在正方體ABCD-A1B1C1D1中E、F分別在A1D、AC上,且A1E=
2
3
A1D,AF=
1
3
AC,則(  )
A.EF至多與A1D、AC之一垂直
B.EF是A1D、AC的公垂線
C.EF與BD1相交
D.EF與BD1異面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知球面上的三點(diǎn)A、B、C,AB=6,BC=8,AC=10,球的半徑為13,求球心到平面ABC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖是某直三棱柱ABC-DPQ被削去上底后的直觀圖與三視圖的側(cè)視圖、俯視圖.在直觀圖中,M是BD的中點(diǎn).側(cè)視圖是直角梯形,俯視圖是等腰直角三角形,有關(guān)數(shù)據(jù)如圖所示.
(1)求證:EM平面ABC;
(2)求出該幾何體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在四棱錐P-ABCD中,底面ABCD是正方形,PD⊥底面ABCD,E為側(cè)棱PD的中點(diǎn),AC與BD的交點(diǎn)為O.求證:
(1)直線OE平面PBC;
(2)平面ACE⊥平面PBD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,梯形ABCD和正△PAB所在平面互相垂直,其中ABDC,AD=CD=
1
2
AB
,且O為AB中點(diǎn).
(I)求證:BC平面POD;
(II)求證:AC⊥PD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在斜三棱柱ABC-A1B1C1中,側(cè)面ACC1A1⊥平面ABC,∠ACB=90°.
(1)求證:BC⊥AA1
(2)若M,N是棱BC上的兩個(gè)三等分點(diǎn),求證:A1N平面AB1M.

查看答案和解析>>

同步練習(xí)冊(cè)答案