設(shè)函數(shù)f(x)=lnx+ax2-(3a+1)x+(2a+1),其中a∈R.
(Ⅰ)如果x=1是函數(shù)f(x)的一個(gè)極值點(diǎn),求實(shí)數(shù)a的值及f(x)的最大值;
(Ⅱ)求實(shí)數(shù)a的值,使得函數(shù)f(x)同時(shí)具備如下的兩個(gè)性質(zhì):
①對(duì)于任意實(shí)數(shù)x1,x2∈(0,1)且x1≠x2,數(shù)學(xué)公式恒成立;
②對(duì)于任意實(shí)數(shù)x1,x2∈(1,+∞)且x1≠x2,數(shù)學(xué)公式恒成立.

解:(Ⅰ)函數(shù)f(x)的定義域是(0,+∞),,
依題意,f'(1)=1+2a-(3a+1)=0,解得a=0.
此時(shí),f(x)=lnx-x+1,
因?yàn)閤∈(0,+∞),令f'(x)>0,可得x∈(0,1);令f'(x)<0,可得x∈(1,+∞).
所以,函數(shù)f(x)在(0,1)上單調(diào)遞增,在(1,+∞)上單調(diào)遞減.
因此,當(dāng)x=1時(shí),f(x)取得最大值f(1)=0.
(Ⅱ)令
==
由(Ⅰ)中的結(jié)論可知,lnx-x+1<0對(duì)任意x∈(0,1)∪(1,+∞)恒成立,即lnx<x-1(*)恒成立.
(。┤绻鹸1,x2∈(0,1),且x1≠x2,則
根據(jù)(*)可得,
若f(x)滿足性質(zhì)①,則恒成立,
于是對(duì)任意x1,x2∈(0,1)且x1≠x2恒成立,所以
(ⅱ)如果x1,x2∈(1,+∞)且x1≠x2,則
根據(jù)(*)可得?,
則F(x1,x2)<.若f(x)滿足性質(zhì)②,則恒成立.
于是對(duì)任意x1,x2∈(1,+∞)且x1≠x2恒成立,所以a
綜合(。áⅲ┛傻茫琣=
分析:(Ⅰ)先求函數(shù)的定義域、導(dǎo)數(shù)f′(x),由題意f'(1)=0,解出可得a值,在定義域內(nèi)解不等式f'(x)>0,f'(x)<0,可得f(x)的單調(diào)性,根據(jù)單調(diào)性可得其最大值;
(Ⅱ)令=,由(Ⅰ)中的結(jié)論可得對(duì)任意x∈(0,1)∪(1,+∞),lnx<x-1(*)恒成立.(ⅰ)如果x1,x2∈(0,1),且x1≠x2,則.根據(jù)(*)可得,.由性質(zhì)①轉(zhuǎn)化為恒成立問題,可得a的范圍;(ⅱ)如果x1,x2∈(1,+∞)且x1≠x2,則.再根據(jù)(*)進(jìn)行放縮,由性質(zhì)②可得恒成立問題,由此可得a的范圍,綜合(i)(ii)可得a的范圍;
點(diǎn)評(píng):本題考查利用導(dǎo)數(shù)研究函數(shù)的極值、最值問題,考查恒成立問題,考查學(xué)生綜合運(yùn)用知識(shí)分析解決問題的能力,解決(Ⅱ)問的關(guān)鍵是借助(Ⅰ)中的結(jié)論得到恰當(dāng)不等式.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=ln(x+a)+x2
(I)若當(dāng)x=-1時(shí),f(x)取得極值,求a的值,并討論f(x)的單調(diào)性;
(II)若f(x)存在極值,求a的取值范圍,并證明所有極值之和大于ln
e2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(Ⅰ)設(shè)函數(shù)f(x)=ln(1+x)-
2x
x+2
,證明:當(dāng)x>0時(shí),f(x)>0;
(Ⅱ)從編號(hào)1到100的100張卡片中每次隨機(jī)抽取一張,然后放回,用這種方式連續(xù)抽取20次,設(shè)抽得的20個(gè)號(hào)碼互不相同的概率為P.證明:P<(
9
10
)
19
1
e2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•楊浦區(qū)一模)設(shè)函數(shù)f(x)=ln(x2-x-6)的定義域?yàn)榧螦,集合B={x|
5x+1
>1}.請(qǐng)你寫出一個(gè)一元二次不等式,使它的解集為A∩B,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=ln(x+a)+x2(a>
2
)
,
(1)若a=
3
2
,解關(guān)于x不等式f(e
x
-
3
2
)<ln2+
1
4
;
(2)證明:關(guān)于x的方程2x2+2ax+1=0有兩相異解,且f(m)和f(n)分別是函數(shù)f(x)的極小值和極大值(m,n為該方程兩根,且m>n).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=ln(x+a)+2x2
(1)若當(dāng)x=-1時(shí),f(x)取得極值,求a的值;
(2)在(1)的條件下,方程ln(x+a)+2x2-m=0恰好有三個(gè)零點(diǎn),求m的取值范圍;
(3)當(dāng)0<a<1時(shí),解不等式f(2x-1)<lna.

查看答案和解析>>

同步練習(xí)冊(cè)答案