已知函數(shù)
(1)試判斷上的單調(diào)性;
(2)當(dāng)時(shí),求證:函數(shù)的值域的長(zhǎng)度大于(閉區(qū)間[m,n]的長(zhǎng)度定義為nm).
(1)函數(shù)上為增函數(shù).(2)同解析。
(1)∵,

時(shí),時(shí)
∴函數(shù)上為增函數(shù).
(2)由(1)知;
,      ∴(﹡)
,  ∵,  ∴,
∴由(﹡)式得,即為;
∵函數(shù)的值域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823134742648369.gif" style="vertical-align:middle;" />,
∴函數(shù)的值域的長(zhǎng)度為,
∴函數(shù)的值域的長(zhǎng)度大于
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

對(duì)于函數(shù),若存在x0∈R,使f(x0)=x0成立,則稱x0f(x)的不動(dòng)點(diǎn).如果函數(shù)f(x)=有且僅有兩個(gè)不動(dòng)點(diǎn)0和2.
(Ⅰ)試求b、c滿足的關(guān)系式;
(Ⅱ)若c=2時(shí),各項(xiàng)不為零的數(shù)列{an}滿足4Sn·f()=1,
求證:;
(Ⅲ)設(shè)bn=-Tn為數(shù)列{bn}的前n項(xiàng)和,求證:T2009-1<ln2009<T2008

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

某鎮(zhèn)人口第二年比第一年增長(zhǎng),第三年比第二年增長(zhǎng),又這兩年的平均增長(zhǎng)率為,則的關(guān)系為(   ).
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若函數(shù)yf(x)的圖象與函數(shù)的圖象關(guān)于直線x-y=0對(duì)稱,則f(x)=
__________________________________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

表示自然數(shù)的所有因數(shù)中最大的那個(gè)奇數(shù),例如:9的因數(shù)有1,3,9,,10的因數(shù)有1,2,5,10,,那么      ;         .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)計(jì)一種正四棱柱形冰箱,它有一個(gè)冷凍室和一個(gè)冷藏室,冷藏室用兩層隔板分為三個(gè)抽屜,問:如何設(shè)計(jì)它的外形尺寸,能使得冰箱體積為定值時(shí),它的表面和三層隔板(包括冷凍室的底層)面積之和S值最小(參考數(shù)據(jù):,,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知二次函數(shù).                  
(1)若,試判斷函數(shù)零點(diǎn)個(gè)數(shù);
(2)是否存在,使同時(shí)滿足以下條件①對(duì),且;②對(duì),都有。若存在,求出的值,若不存在,請(qǐng)說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù),其中為實(shí)數(shù),且處取得的極值為。
⑴求的表達(dá)式;
⑵若處的切線方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)在區(qū)間內(nèi)的圖象是

查看答案和解析>>

同步練習(xí)冊(cè)答案