已知數(shù)列{an}是等差數(shù)列,若a2+2,a4+4,a6+6構(gòu)成等比數(shù)列,這數(shù)列{an}的公差d等于( 。
A、1B、-1C、2D、-2
考點:等比數(shù)列的通項公式
專題:等差數(shù)列與等比數(shù)列
分析:由題意可得a4和d的方程,進而可得d的方程,解方程可得.
解答: 解:由題意a2+2,a4+4,a6+6構(gòu)成等比數(shù)列,
∴(a4+4)2=(a2+2)(a6+6),
∴(a4+4)2=(a4-2d+2)(a4+2d+6),
∴a42+8a4+16=a42+(2d+6-2d+2)a4+(2d+6)(-2d+2),
∴a42+8a4+16=a42+8a4+(2d+6)(-2d+2),
∴(2d+6)(-2d+2)=16,
解得d=-1,
故選:B.
點評:本題考查等比數(shù)列的通項公式和等差數(shù)列的通項公式,屬基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

設(shè)△ABC的內(nèi)角A,B,C所對的邊分別是a,b,c,且sinAsinC=
3
4

(Ⅰ)若a,b,c成等比數(shù)列,求角B的大小;
(Ⅱ)若cosB=
2
3
,求tanA+tanC的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知4件產(chǎn)品中有2件不合格,檢測人員每次檢測一件,求:
(1)前兩次檢測人員就把不合格產(chǎn)品確定出來的概率; 
(2)檢測到第三次就把2件不合格產(chǎn)品確定出來的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=
-x
2+lnx
+ax.
(Ⅰ)若函數(shù)f(x)在(
1
e
,+∞)上是增函數(shù),求實數(shù)a的最小值;
(Ⅱ)若?x1,x2∈[1,e2],使f(x1)≥f′(x2)-a成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若等邊△ABC的邊長為2
3
,平面內(nèi)一點M滿足:
CM
=
1
6
CB
+
2
3
CA
,則
MA
MB
=( 。
A、-1B、2C、-2D、3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,四邊形ACDF為正方形,且平面ACDF⊥平面BCDE,平面ACDF⊥平面ABC,BC=2DE,DE∥BC,M為AB的中點.
(Ⅰ)證明:BC⊥AD;
(Ⅱ)證明EM∥平面ACDF.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在等腰△ABC中,兩腰上的中線分別為BD、CE,且BD⊥CE,求頂角∠A的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某程序框圖如圖所示,則輸出的S的值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)二次函數(shù)f(x)=ax2+bx+c(a,b∈R)滿足條件:①當x∈R時,f(x)的最大值為0,且f(x-1)=f(3-x)成立;②二次函數(shù)f(x)的圖象與直線y=-2交于A、B兩點,且|AB|=4
(Ⅰ)求f(x)的解析式;
(Ⅱ)求最小的實數(shù)n(n<-1),使得存在實數(shù)t,只要當x∈[n,-1]時,就有f(x+t)≥2x成立.

查看答案和解析>>

同步練習冊答案