17.若實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{x≤2}\\{y≤2}\\{x+y≥2}\end{array}\right.$,則目標(biāo)函數(shù)z=$\frac{y}{x+1}$的最大值是2.

分析 先畫出平面區(qū)域,再把目標(biāo)函數(shù)轉(zhuǎn)化為平面區(qū)域內(nèi)的點(diǎn)與定點(diǎn)(-1,0)組成連線的斜率;結(jié)合圖象求出平面區(qū)域內(nèi)的點(diǎn)與定點(diǎn)(-1,0)組成連線的斜率的最大值即可得到結(jié)論.

解答 解:實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{x≤2}\\{y≤2}\\{x+y≥2}\end{array}\right.$,對應(yīng)的平面區(qū)域如圖:
因?yàn)槟繕?biāo)函數(shù)z=$\frac{y}{x+1}$相當(dāng)于平面區(qū)域內(nèi)的點(diǎn)與定點(diǎn)(-1,0)組成連線的斜率;
而由圖可得,當(dāng)過點(diǎn)C時(shí),平面區(qū)域內(nèi)的點(diǎn)與定點(diǎn)(-1,0)組成連線的斜率最大.
聯(lián)立:$\left\{\begin{array}{l}{y=2}\\{x+y=2}\end{array}\right.$可得C(0,2).kpc=$\frac{2-0}{0-(-1)}$=2.
此時(shí)目標(biāo)函數(shù)z=$\frac{y}{x+1}$的最大值是:2.
故答案為:2.

點(diǎn)評 本題考查線性規(guī)劃知識(shí)的延伸,解決本題的關(guān)鍵在于把目標(biāo)函數(shù)轉(zhuǎn)化為平面區(qū)域內(nèi)的點(diǎn)與定點(diǎn)(-1,0)組成連線的斜率.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知函數(shù)f(x)=sin(ωx+φ)(ω>0,0<φ<π),直線x=$\frac{π}{6}$是它的一條對稱軸,且(${\frac{2π}{3}$,0)是離該軸最近的一個(gè)對稱中心,則φ=( 。
A.$\frac{π}{4}$B.$\frac{π}{3}$C.$\frac{π}{2}$D.$\frac{3π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.在△ABC中,a,b,c分別為角A,B,C的對邊,且cos2B+cosB+cos(C-A)=1,則(  )
A.a,b,c成等比數(shù)列B.a,b,c成等差數(shù)列C.a,c,b成等比數(shù)列D.a,c,b成等差數(shù)列

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知函數(shù)y=f(x)是定義在R上的奇函數(shù),對?x∈R都有f(x-3)=f(x-1)成立,當(dāng),x∈(0,1]且x1≠x2時(shí),有$\frac{f({x}_{2})-f({x}_{1})}{{x}_{2}-{x}_{1}}$<0,給出下列命題:
(1)f(x)在[-2,2]上有5個(gè)零點(diǎn)
(2)點(diǎn)(2016,0)是函數(shù)y=f(x)的一個(gè)對稱中心
(3)直線x=2016是函數(shù)y=f(x)圖象的一條對稱軸
(4)f(9.2)<f(π)
則正確的是(1)(2)(4).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知數(shù)列{an},其中a1=2,an-an-1=2n-1(n≥2,n∈N+),則{an}的通項(xiàng)公式an=2n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.長度都為2的向量$\overrightarrow{OA},\overrightarrow{OB}$的夾角為60°,點(diǎn)C在以O(shè)為圓心的圓弧$\widehat{AB}$(劣。┥,$\overrightarrow{OC}$=m$\overrightarrow{OA}$+n$\overrightarrow{OB}$,則m+n的最大值是$\frac{2\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.給出下列命題:
①在△ABC中,若$\overrightarrow{AB}•\overrightarrow{AC}$>0,則∠A為銳角,
②函數(shù)y=x3在R上既是奇函數(shù)又是增函數(shù),
③若$\overrightarrow a=(λ,2),\overrightarrow b=(-3,-5),且\overrightarrow a與\overrightarrow b的夾角為鈍角,則λ的取值范圍是λ>-\frac{10}{3}$
④函數(shù)y=f(x)的圖象與直線x=a至多有一個(gè)交點(diǎn),
⑤若{an}成等比數(shù)列,Sn是前n項(xiàng)和,則S4,S8-S4,S12-S8成等比數(shù)列;
其中正確命題的序號是①②④.(把你認(rèn)為正確命題的序號都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知拋物線C:x2=2py(p>0)過點(diǎn)(2,1),直線l過點(diǎn)P(0,-1)與拋物線C交于A、B兩點(diǎn),點(diǎn)A關(guān)于y軸的對稱點(diǎn)為A′,連接A′B
(1)求拋物線C的標(biāo)準(zhǔn)方程;
(2)問直線A'B是否過定點(diǎn)?若是,求長定點(diǎn)坐標(biāo);若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知正項(xiàng)數(shù)列{an}滿足a1=2且(n+1)an2+anan+1-nan+12=0(n∈N*
(Ⅰ)證明數(shù)列{an}為等差數(shù)列;
(Ⅱ)若記bn=$\frac{4}{{a}_{n}{a}_{n+1}}$,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

同步練習(xí)冊答案