【題目】如圖,在正方體ABCD-A1B1C1D1中,E是AA1的中點(diǎn),畫(huà)出過(guò)D1、C、E的平面與平面ABB1A1的交線(xiàn),并說(shuō)明理由.
【答案】詳見(jiàn)解析.
【解析】 試題分析:取的中點(diǎn),連結(jié),則是過(guò)的平面與平面的交線(xiàn).
試題解析:
如圖,取AB的中點(diǎn)F,連接EF、A1B、CF.
∵E是AA1的中點(diǎn),∴EF∥A1B.
在正方體ABCD-A1B1C1D1中,A1D1∥BC,A1D1=BC,
∴四邊形A1BCD1是平行四邊形.
∴A1B∥CD1,∴EF∥CD1.
∴E、F、C、D1四點(diǎn)共面.
∵E∈平面ABB1A1,E∈平面D1CE,
F∈平面ABB1A1,F(xiàn)∈平面D1CE,
∴平面ABB1A1∩平面D1CE=EF.
∴過(guò)D1、C、E的平面與平面ABB1A1的交線(xiàn)為EF.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在棱長(zhǎng)均相等的正四棱錐中, 為底面正方形的重心, 分別為側(cè)棱的中點(diǎn),有下列結(jié)論:
①平面;②平面平面;③;
④直線(xiàn)與直線(xiàn)所成角的大小為.
其中正確結(jié)論的序號(hào)是__________.(寫(xiě)出所有正確結(jié)論的序號(hào))
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知{an}是等差數(shù)列,滿(mǎn)足a1=3,a4=12,數(shù)列{bn}滿(mǎn)足b1=4,b4=20,且{bn-an}為等比數(shù)列.
(1)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(2)求數(shù)列{bn}的前n項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知平面平面,四邊形是正方形,四邊形是菱形,且,,點(diǎn)、分別為邊、的中點(diǎn),點(diǎn)是線(xiàn)段上的動(dòng)點(diǎn).
(1)求證:;
(2)求三棱錐的體積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市化工廠三個(gè)車(chē)間共有工人1 000名,各車(chē)間男、女工人數(shù)如下表:
第一車(chē)間 | 第二車(chē)間 | 第三車(chē)間 | |
女工 | 173 | 100 | y |
男工 | 177 | x | z |
已知在全廠工人中隨機(jī)抽取1名,抽到第二車(chē)間男工的可能性是0. 15.
(1)求x的值;
(2)現(xiàn)用分層抽樣的方法在全廠抽取50名工人,問(wèn)應(yīng)在第三車(chē)間抽取多少名?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的圖象在處的切線(xiàn)方程;
(2)證明:對(duì)任意的,都有;
(3)設(shè),比較與的大小,并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】通過(guò)隨機(jī)詢(xún)問(wèn)110名性別不同的大學(xué)生是否愛(ài)好某項(xiàng)運(yùn)動(dòng),得到如表的列聯(lián)表:
算得,K2≈7.8.見(jiàn)附表:參照附表,得到的正確結(jié)論是( )
男 | 女 | 總計(jì) | |||||
愛(ài)好 | 40 | 20 | 60 | ||||
不愛(ài)好 | 20 | 30 | 50 | ||||
總計(jì) | 60 | 50 | 110 | ||||
P(K2≥k) | 0.050 | 0.010 | 0.001 | ||||
k | 3.841 | 6.635 | 10.828 | ||||
A. 在犯錯(cuò)誤的概率不超過(guò)0.1%的前提下,認(rèn)為“愛(ài)好該項(xiàng)運(yùn)動(dòng)與性別有關(guān)”
B. 在犯錯(cuò)誤的概率不超過(guò)0.1%的前提下,認(rèn)為“愛(ài)好該項(xiàng)運(yùn)動(dòng)與性別無(wú)關(guān)”
C. 有99%以上的把握認(rèn)為“愛(ài)好該項(xiàng)運(yùn)動(dòng)與性別有關(guān)”
D. 有99%以上的把握認(rèn)為“愛(ài)好該項(xiàng)運(yùn)動(dòng)與性別無(wú)關(guān)”
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)人的某一特征(如眼睛的大小)是由他的一對(duì)基因所決定,以d表示顯性基因,r表示隱性基因,則具有dd基因的人為純顯性,具有rr基因的人為純隱性,具有rd基因的人為混合性,純顯性與混合性的人都顯露顯性基因決定的某一特征,孩子從父母身上各得到一個(gè)基因,假定父母都是混合性,問(wèn):
(1)1個(gè)孩子顯露顯性特征的概率是多少?
(2)“該父母生的2個(gè)孩子中至少有1個(gè)顯露顯性特征”,這種說(shuō)法正確嗎?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在高中學(xué)習(xí)過(guò)程中,同學(xué)們經(jīng)常這樣說(shuō):“如果物理成績(jī)好,那么學(xué)習(xí)數(shù)學(xué)就沒(méi)什么問(wèn)題.”某班針對(duì)“高中生物理學(xué)習(xí)對(duì)數(shù)學(xué)學(xué)習(xí)的影響”進(jìn)行研究,得到了學(xué)生的物理成績(jī)與數(shù)學(xué)成績(jī)具有線(xiàn)性相關(guān)關(guān)系的結(jié)論.現(xiàn)從該班隨機(jī)抽取5名學(xué)生在一次考試中的物理和數(shù)學(xué)成績(jī),如下表:
編號(hào) 成績(jī) | 1 | 2 | 3 | 4 | 5 |
物理() | 90 | 85 | 74 | 68 | 63 |
數(shù)學(xué)() | 130 | 125 | 110 | 95 | 90 |
(1)求數(shù)學(xué)成績(jī)關(guān)于物理成績(jī)的線(xiàn)性回歸方程(精確到),若某位學(xué)生的物理成績(jī)?yōu)?0分,預(yù)測(cè)他的數(shù)學(xué)成績(jī);
(2)要從抽取的五位學(xué)生中隨機(jī)選出三位參加一項(xiàng)知識(shí)競(jìng)賽,以表示選中的學(xué)生的數(shù)學(xué)成績(jī)高于100分的人數(shù),求隨機(jī)變量的分布列及數(shù)學(xué)期望.
(參數(shù)公式: , .)
參考數(shù)據(jù): ,
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com