已知函數(shù)f(x)=x2+ax,x∈R.
(1)若f(x+1)=f(-x),求a的值;
(2)當(dāng)a=2時(shí),求g(x)=xf(x)的單調(diào)區(qū)間.
分析:(1)先由條件求得f(x+1)和f(-x)的解析式,再根據(jù)f(x+1)=f(-x),求得a的值.
(2)當(dāng)a=2時(shí),先求出 g(x)的解析式,再求出它的導(dǎo)數(shù),根據(jù)導(dǎo)數(shù)的符號(hào)求出函數(shù)g(x)的單調(diào)區(qū)間.
解答:解:(1)∵已知函數(shù)f(x)=x2+ax,故 f(x+1)=(x+1)2+a(x+1)=x2+(2+a)x+1+a,(1分)
故f(-x)=)=x2-ax
再由f(x+1)=f(-x),可得  x2+(2+a)x+1+a=x2-ax,( 2分)
所以有:1+a=0,2+a=-a,解得a=-1.(3分)
(2)當(dāng)a=2時(shí),∵g(x)=xf(x)=x(x2+2x)=x3+2x2,(5分)
g′(x)=3x2+4x=x(3x+4)=3x(x+
4
3
)
.(7分)
當(dāng)x<-
4
3
時(shí),g'(x)>0,當(dāng)x∈(-
4
3
,0)
時(shí),g'(x)<0;當(dāng)x>0時(shí),g'(x)>0,(9分)
所以g(x)=xf(x)的單調(diào)遞增區(qū)間為(-∞,-
4
3
)
和(0,+∞),單調(diào)遞減區(qū)間為(-
4
3
,0)
.(10分)
點(diǎn)評(píng):本題主要考查二次函數(shù)的性質(zhì),利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,求函數(shù)的單調(diào)區(qū)間的方法,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分圖象如圖所示,則f(x)的解析式是( �。�
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•深圳一模)已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對(duì)一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•上海模擬)已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時(shí),求f(x)的最小值;
(2)若f(a)≥2m-1對(duì)任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時(shí),記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時(shí),記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:上海模擬 題型:解答題

已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時(shí),求f(x)的最小值;
(2)若f(a)≥2m-1對(duì)任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時(shí),記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時(shí),記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:深圳一模 題型:解答題

已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對(duì)一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案