14.下列函數(shù)中既是偶函數(shù),又在區(qū)間(0,1)上單調(diào)遞增的是( 。
A.y=cosxB.$y={x^{\frac{1}{2}}}$C.y=2|x|D.y=|lgx|

分析 根據(jù)偶函數(shù)的定義判斷各個(gè)選項(xiàng)中的函數(shù)是否為偶函數(shù),再看函數(shù)是否在區(qū)間(0,1)上單調(diào)遞減,從而得出結(jié)論.

解答 解:對于A:y=cosx是周期函數(shù),函數(shù)在(0,1)遞減,不合題意;
對于B:此函數(shù)不是偶函數(shù),不合題意;
對于C:既是偶函數(shù),又在區(qū)間(0,1)上單調(diào)遞增符合題意;
對于D:y=lg|x|是偶函數(shù)且在(0,1)遞增,不合題意;
故選:C.

點(diǎn)評(píng) 本題主要考查函數(shù)的單調(diào)性和奇偶性的判斷,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.在直角梯形ABCD中,AB=2,CD=CB=1,∠ABC=90°,平面ABCD外有一點(diǎn)E,平面ADE⊥平面ABCD,AE=ED=1.
(1)求證:AE⊥BE;
(2)求二面角C-BE-A的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.若-1<sinα+cosα<0,則( 。
A.sinα<0B.cosα<0C.tanα<0D.cos2α<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.在△ABC中,角A,B,C的對邊分別為a,b,c,且a>b>c,$\sqrt{3}$c-2bsinC=0.
(Ⅰ)求角B的大。
(Ⅱ)若b=$\sqrt{3}$,c=1,求a和△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖,在正三棱柱ABC-A1B1C1中,點(diǎn)D是AB中點(diǎn),M是AA1上一點(diǎn),且AM=tAA1
(1)求證:BC1∥平面A1CD;
(2)若3AB=2AA1,當(dāng)t為何值時(shí),B1M⊥平面A1CD?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知函數(shù)$f(x)=2sin(ωx+φ)(ω>0),x∈[{-\frac{π}{12},\frac{2π}{3}}]$的圖象如圖所示,若f(x1)=f(x2),且x1≠x2,則f(x1+x2)=( 。
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知集合A={x|x2+x-2<0},B={x|y=log2x},則A∩B=(  )
A.(-2,1)B.(-2,0)C.(0,+∞)D.(0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知函數(shù)f(x)=$\left\{\begin{array}{l}{lo{g}_{a}(x+2),}&{x≥2}\\{{2}^{1-x},}&{x<2}\end{array}\right.$(a>0且a≠1),若f(6)+f(-1)=7,函數(shù)y=f(x)-b僅有一個(gè)零點(diǎn),則實(shí)數(shù)b的取值范圍為( 。
A.[$\frac{1}{2}$,2]B.($\frac{1}{2}$,2]C.[$\frac{1}{2}$,2)D.($\frac{1}{2}$,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.將長寬分別為2和1的長方形ABCD沿對角線AC折起,得到四面體A-BCD,則四面體A-BCD外接球的表面積為( 。
A.B.C.10πD.20π

查看答案和解析>>

同步練習(xí)冊答案