當p1,p2,…,pn均為正數(shù)時,稱數(shù)學公式為p1,p2,…,pn的“均倒數(shù)”、已知數(shù)列{an}的各項均為正數(shù),且其前n項的“均倒數(shù)”為數(shù)學公式
(Ⅰ)試求數(shù)列{an}的通項公式;
(Ⅱ)設數(shù)學公式,試判斷并說明cn+1-cn(n∈N*)的符號;
(Ⅲ)已知數(shù)學公式,記數(shù)列{bn}的前n項和為Sn,試求數(shù)學公式的值.

解:(Ⅰ)由題得:a1+a2+…+an-1+an=n(2n+1) ①,
a1+a2+…+an-1=(n-1)(2n-1) ②,
兩式相減,得an=4n-1(n≥2)
,解得a1=3=4×1-1,
∴an=4n-1(n∈N+).
(Ⅱ)∵,,
,即cn+1>cn
(Ⅲ)∵
∴Sn=b1+b2++bn=t3+t7++t4n-1,
當t=1時,Sn=n,;
當t>0且t≠1時,,
綜上得,
分析:(Ⅰ)先利用條件求得a1+a2++an-1+an=n(2n+1)和a1+a2++an-1=(n-1)(2n-1),兩式作差就可求出數(shù)列{an}的通項公式(注意檢驗n=1是否成立);
(Ⅱ)利用 (Ⅰ)求得的數(shù)列{an}的通項公式代入即可求出cn+1-cn再利用函數(shù)的單調(diào)性就可判斷出cn+1-cn(n∈N*)的符號;
(Ⅲ)利用 (Ⅰ)求得的數(shù)列{an}的通項公式代入即可求出數(shù)列{bn}的通項公式,再對等比數(shù)列{bn}分公比等于1和不等于1兩種情況分別求和即可找到的值;
點評:本題在利用新定義的條件下考查數(shù)列的通項公式以及求和公式,還有利用函數(shù)的單調(diào)性判斷函數(shù)值的符號.是一道綜合性很強的好題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知雙曲線C的方程為
x2
4
-
y2
5
=1,若直線x-my-3=0截雙曲線的一支所得弦長為5.
(I)求m的值;
(II)設過雙曲線C上的一點P的直線與雙曲線的兩條漸近線分別交于P1,P2,且點P分有向線段
P1P2
所成的比為λ(λ>0).當λ∈[
3
4
,
3
2
]
時,求|
OP1
||
OP2
|(O為坐標原點)的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知動點P的軌跡方程為:
x2
4
-
y2
5
=1(x>2),O是坐標原點.
①若直線x-my-3=0截動點P的軌跡所得弦長為5,求實數(shù)m的值;
②設過P的軌跡上的點P的直線與該雙曲線的兩漸近線分別交于點P1、P2,且點P分有向線段
P1P2
所成的比為λ(λ>0),當λ∈[
3
4
,
3
2
]時,求|
OP1
|•|
OP2
|的最值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•遂寧二模)己知雙曲線C的方程為
x2
4
-
y2
5
=1
,若直線x-my-3=0截雙曲線的一支所得弦長為5.
(Ⅰ)求m的值;
(Ⅱ)設過雙曲線C上的一點P的直線與雙曲線的兩條漸近線分別交于點P1、P2,且點P分有向線段
P1P2
所成的比為λ(λ>0),當λ=
2
3
時,求|
op1
|•|
OP2
|
(O為坐標原點)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(09年湖北鄂州5月模擬理)已知兩定點A(-3,0),B(3,0),動圓M與直線AB相切于點N,且,現(xiàn)分別過點A、B作動圓M的切線(異于直線AB),兩切線相交于點P

⑴求動點P的軌跡方程;

⑵若直線xmy3=0截動點P的軌跡所得的弦長為5,求m的值;

    ⑶設過軌跡上的點P的直線與兩直線分別交于點P1、P2,且點P分有向線段所成的比為λ(λ>0),當λ∈時,求的最值.

查看答案和解析>>

科目:高中數(shù)學 來源:2012年四川省南充高中第二次高考適應性考試數(shù)學試卷(理科)(解析版) 題型:解答題

已知動點P的軌跡方程為:-=1(x>2),O是坐標原點.
①若直線x-my-3=0截動點P的軌跡所得弦長為5,求實數(shù)m的值;
②設過P的軌跡上的點P的直線與該雙曲線的兩漸近線分別交于點P1、P2,且點P分有向線段所成的比為λ(λ>0),當λ∈[]時,求||•||的最值.

查看答案和解析>>

同步練習冊答案