已知tanα=
3
,且點A(-4,a)在角α的終邊上,則a的值是( 。
A、4
3
B、-4
3
C、±4
3
D、
3
考點:任意角的三角函數(shù)的定義
專題:三角函數(shù)的求值
分析:由條件利用任意角的三角函數(shù)的定義,求得a的值.
解答: 解:∵tanα=
3
,且點A(-4,a)在角α的終邊上,
∴tanα=
y
x
=
a
-4
=
3
,∴a=-4
3
,
故選:B.
點評:本題主要考查任意角的三角函數(shù)的定義,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設非空集合P,Q滿足P∩Q=P,則( 。
A、?x∈Q,有x∈P
B、?x∉Q,有x∉P
C、?x0∉Q,使得x0∈P
D、?x0∈P,使得x0∉P

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知全集U=R,集合A={x|x2-4x+3<0},B={x|
2
x-2
>1},C={x|x-m|>2,m∈R}.對于任意x∈A∩B,總有x∈∁UC.
(1)A∩B;
(2)求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)對一切實數(shù)x,y都滿足f(x+y)=f(y)+(x+2y+1)x,且f(1)=0,
(1)求f(0)的值;
(2)求f(x)的解析式;
(3)當x∈[0,
1
2
]時,f(x)+3<2x+a恒成立,求a的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左右焦點分別為F1,F(xiàn)2,過F2作x軸的垂線與C相交于A,B兩點,F(xiàn)1B與y軸相交于點D.若AD⊥F1B,則橢圓C的離心率等于( 。
A、
3
4
B、
3
3
C、
2
4
D、
2
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知P(-3,4)為角α終邊上的一點,則cos(π+α)=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若A={x∈Z|2≤2x≤16},B={3,4,5},則A∩B=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,a,b,c分別是角A,B,C的對邊,且
cosB
cosC
=-
b
2a+c
若b=
13
,a+c=4,則a的值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線l:y-1=
3
(x-2),則過點P(2,1)且與直線l所夾的銳角為30°的直線方程為
 

查看答案和解析>>

同步練習冊答案