已知雙曲線G的中心在原點,它的漸近線方程是y=±
1
2
x
.過點P(-4,0)作斜率為
1
4
的直線l,使得l和G交于A,B兩點,和y軸交于點C,點P在線段AB上,并且滿足|PA|•|PB|=|PC|2,求雙曲線G的方程.
分析:先根據(jù)漸近線方程設(shè)出雙曲線的方程為x2-4y2=λ,再求出直線l的方程代入雙曲線方程,得x1+x2,x1x2,最后將|PA|•|PB|=|PC|2等價為(x1+4)•(x2+4)+y1y2=-17,列方程求出λ即可
解答:解:設(shè)所求雙曲線方程為(x+2y)(x-2y)=λ,即x2-4y2=λ  (λ≠0)
∵直線l點P(-4,0)作斜率為
1
4
,∴直線方程為y=
1
4
x+1,
設(shè)A(x1,y1),B(x2,y2)C(0,1),∴
PA
=(x1+4,y1),
PB
=(x2+4,y2
聯(lián)立直線方程與雙曲線方程,
y=
1
4
x+1
x2-4y2
,3x2-8x-16-4λ=0
得,x1+x2=
8
3
,x1x2=
-16-4λ
3
  ①
∵|PA|•|PB|=|PC|2,∴
PA
PB
=-17

即(x1+4)•(x2+4)+y1y2=-17
即(x1+4)•(x2+4)+(
1
4
x1+1)•(
1
4
x2+1)=-17
即x1x2+4(x1+x2)=-32   ②
將①代入②解得λ=28
故雙曲線方程為x2-4y2=28
點評:本題考查了雙曲線的幾何性質(zhì),雙曲線的標(biāo)準(zhǔn)方程,直線與雙曲線的關(guān)系等知識,解題時要學(xué)會運用待定系數(shù)法求標(biāo)準(zhǔn)方程,學(xué)會運用韋達(dá)定理解決問題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線G的中心在原點,它的漸近線與圓x2+y2-10x+20=0相切.過點P(-4,0)作斜率為
14
的直線l,使得l和G交于A,B兩點,和y軸交于點C,并且點P在線段AB上,又滿足|PA|•|PB|=|PC|2
(1)求雙曲線G的漸近線的方程;
(2)求雙曲線G的方程;
(3)橢圓S的中心在原點,它的短軸是G的實軸.如果S中垂直于l的平行弦的中點的軌跡恰好是G的漸近線截在S內(nèi)的部分,求橢圓S的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線G的中心在原點,它的漸近線與圓x2+y2-10x+20=0相切.過點P(-4,0)作斜率為
14
的直線l,使得l和G交于A,B兩點,和y軸交于點C,并且點P在線段AB上,又滿足|PA|•|PB|=|PC|2
(1)求雙曲線G的漸近線的方程;
(2)求雙曲線G的方程;
(3)橢圓S的中心在原點,它的短軸是G的實軸、如果S中垂直于l的平行弦的中點的軌跡恰好是G的漸近線截在S內(nèi)的部分AB,若P(x,y)(y>0)為橢圓上一點,求當(dāng)△ABP的面積最大時點P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆山東省濟寧市高二上學(xué)期期末考試?yán)砜茢?shù)學(xué) 題型:解答題

(本小題滿分12分)

已知雙曲線G的中心在原點,它的漸近線與圓x2+y2-10x+20=0相切.過點P(-4,0)作斜率為的直線,使得和G交于A,B兩點,和y軸交于點C,并且點P在線段AB上,又滿足|PA|·|PB|=|PC|2.   

(1)求雙曲線G的漸近線的方程;  

(2)求雙曲線G的方程;

(3)橢圓S的中心在原點,它的短軸是G的實軸.如果S中垂直于的平行弦的中點的軌跡恰好是G的漸近線截在S內(nèi)的部分AB,若P(x,y)(y>0)為橢圓上一點,求當(dāng)的面積最大時點P的坐標(biāo).

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆吉林省高二上學(xué)期質(zhì)量檢測理科數(shù)學(xué) 題型:解答題

.已知雙曲線G的中心在原點,它的漸近線與圓x2+y2-10x+20=0相切.過點P(-4,0)作斜率為的直線,使得和G交于A,B兩點,和y軸交于點C,并且點P在線段AB上,又滿足|PA|·|PB|=|PC|2.   

(1)求雙曲線G的漸近線的方程;  

(2)求雙曲線G的方程;

(3)橢圓S的中心在原點,它的短軸是G的實軸.如果S中垂直于的平行弦的中點的軌跡恰好是G的漸近線截在S內(nèi)的部分AB,若P(x,y)(y>0)為橢圓上一點,求當(dāng)的面積最大時點P的坐標(biāo).

 

查看答案和解析>>

同步練習(xí)冊答案