在△ABC中,“cosA=2sinBsinC”是“△ABC為鈍角三角形”的( )
A.必要不充分條件
B.充要條件
C.充分不必要條件
D.既不充分也不必要條件
【答案】分析:先判別充分性,根據(jù)三角函數(shù)相關(guān)知識(shí)和恒等變換容易得到cos(B-C)=0,從而得到即B或C為鈍角,充分性成立,再判別必要性,顯然由“△ABC為鈍角三角形”推不出條件“cosA=2sinBsinC”,故必要性不成立.
解答:解:2sinBsinC=cosA=-cos(B+C)=sinBsinC-cosBcosC,
即cos(B-C)=0,
這說(shuō)明B-C=90度或-90度,
即B或C為鈍角.
但是,ABC為鈍角三角形顯然導(dǎo)不出cos(B-C)=0這么強(qiáng)的條件,
所以,cosA=2sinBsinC是三角形ABC為鈍角三角形的充分不必要條件.
點(diǎn)評(píng):此題考查必要條件、充分條件與充要條件的判別,同時(shí)考查三角函數(shù)相關(guān)知識(shí).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

ABC中,已知,,,求.

ww w.ks 5u.co m

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

ABC中,已知,,,求.

ww w.ks 5u.co m

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013年吉林省實(shí)驗(yàn)中學(xué)高考數(shù)學(xué)二模試卷(文科)(解析版) 題型:填空題

在△ABC中,AB邊上的中線CO=4,若動(dòng)點(diǎn)P滿足,則的最小值是   

查看答案和解析>>

同步練習(xí)冊(cè)答案
闂傚倸鍊搁崐鎼佸磹閻戣姤鍤勯柤鍝ユ暩娴犳艾鈹戞幊閸婃鎱ㄧ€靛憡宕叉慨妞诲亾闁绘侗鍠涚粻娑樷槈濞嗘劖顏熼梻浣芥硶閸o箓骞忛敓锟� 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬崘顕ч埞鎴︽偐閸欏鎮欑紓浣哄閸ㄥ爼寮婚妸鈺傚亞闁稿本绋戦锟�