已知等差數(shù)列{an}的前n項和為Sn,公差d≠0,S2=4,且a2,a5,a14成等比數(shù)列.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)從數(shù)列{an}中依次取出第2項,第4項,第8項,…,第2n項,…,按原來順序組成一個新數(shù)列{bn},記該數(shù)列的前n項和為Tn,求Tn的表達(dá)式.
考點(diǎn):數(shù)列的求和,等比數(shù)列的通項公式
專題:等差數(shù)列與等比數(shù)列
分析:(Ⅰ)由已知得:
a1+a1+d=4
(a1+4d)2=(a1+d)(a1+13d)
,求出首項和公差,則等差數(shù)列{an}的通項公式可求;
(Ⅱ)把數(shù)列{an}的通項公式代入bn=a2n,然后利用分組求和及等比數(shù)列的通項公式得答案.
解答: 解:(Ⅰ)依題意得:
a1+a1+d=4
(a1+4d)2=(a1+d)(a1+13d)
,解得
a1=1
d=2

∴an=a1+(n-1)d=1+2(n-1)=2n-1.
即an=2n-1;
(Ⅱ)由已知得,bn=a2n=2×2n-1=2n+1-1
∴Tn=b1+b2+…+bn=(22-1)+(23-1)+…+(2n+1-1)
=(22+23+…+2n+1)-n=
4(1-2n)
1-2
-n=2n+2-4-n
點(diǎn)評:本題主要考查等比數(shù)列和等差數(shù)列的性質(zhì),考查了等比數(shù)列的前n項和的求法,考查了化歸與轉(zhuǎn)化思想方法,是中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=2sin(2x+
π
6
)+a-1(a∈R)在區(qū)間[0,
π
2
]上有兩個零點(diǎn)x1,x2(x1≠x2),則x1+x2-a的取值范圍是( 。
A、(
π
3
-1,
π
3
+1)
B、[
π
3
π
3
+1)
C、(
3
-1,
3
+1)
D、[
3
,
3
+1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若關(guān)于x的不等式|mx-2|<3的解集為{x|-
5
6
<x<
1
6
},則m=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知S,A,B,C是球O表面上的點(diǎn),SA⊥平面ABC,AB⊥BC,SA=AB=1,BC=
2
,則球O的內(nèi)接正四面體的棱長等于( 。
A、
2
6
3
B、
6
3
C、
3
6
2
D、2
2
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若用1,2,3,4,5,6,7這七個數(shù)字中的六個數(shù)字組成沒有重復(fù)數(shù)字,且任何相鄰兩個數(shù)字的奇偶性不同的六位數(shù),則這樣的六位數(shù)共有
 
個(用數(shù)字作答).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足前n項和Sn=n2+1,數(shù)列{bn}滿足bn=
2
an+1
,且前n項和為Tn,設(shè)cn=T2n+1-Tn
(1)求數(shù)列{bn}的通項公式;
(2)判斷數(shù)列{cn}的單調(diào)性;
(3)當(dāng)n≥2時,T2n+1-Tn
1
5
-
7
12
log2(a-1)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)y=f(x)滿足f(a+x)+f(a-x)=2b(其中a,b不同時為0),則稱函數(shù)y=f(x)為“準(zhǔn)奇函數(shù)”,稱點(diǎn)(a,b)為函數(shù)f(x)的“中心點(diǎn)”.現(xiàn)有如下命題:
①函數(shù)f(x)=sinx+1是準(zhǔn)奇函數(shù);
②函數(shù)f(x)=x3是準(zhǔn)奇函數(shù);
③若準(zhǔn)奇函數(shù)y=f(x)在R上的“中心點(diǎn)”為(a,f(a)),則函數(shù)F(x)=f(x+a)-f(a)為R上的奇函數(shù);
④已知函數(shù)f(x)=x3-3x2+6x-2是準(zhǔn)奇函數(shù),則它的“中心點(diǎn)”為(1,2);
其中正確的命題是
 
.(寫出所有正確命題的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知AC,BD是圓O的兩條互相垂直的直徑,直角梯形ABEF所在平面與圓O所在平面互相垂直,其中∠FAB=∠EBA=90°,BE=2,AF=6,AC=4
2
,點(diǎn)N為線段EF中點(diǎn).
(Ⅰ)求證:直線NO∥平面EBC;
(Ⅱ)若點(diǎn)M在線段AC上,且點(diǎn)M在平面CEF上的射影為線段NC的中點(diǎn),請求出線段AM的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在某校的一次英語聽力測試中用以下莖葉圖記錄了甲、乙兩組各5名學(xué)生的聽力成績(單位:分)已知甲組數(shù)據(jù)的眾數(shù)為15,乙組數(shù)據(jù)的中位數(shù)為17,則x、y的值分別為( 。
A、2,5B、5,5
C、5,7D、8,7

查看答案和解析>>

同步練習(xí)冊答案