已知橢圓的四個頂點恰好是一邊長為2,一內(nèi)角為的菱形的四個頂點.
(I)求橢圓的方程;
(II)直線與橢圓交于,兩點,且線段的垂直平分線經(jīng)過點,求為原點)面積的最大值.
(I)  ; (II)  .

試題分析:(I)由圖形的對稱性及橢圓的幾何性質(zhì),易得 ,進(jìn)而寫出方程; (II) ΔAOB的面積可以用 ,所以本題需要用弦長公式表示AB的長度,用點到之間的距離公式表示坐標(biāo)原點O到直線的距離,而這些都需要有直線的方程作為前提條件。所以本題應(yīng)先考慮設(shè)出直線AB的方程.此外,設(shè)方程的過程中,注意對于特殊情形的討論.
試題解析:
(I)因為橢圓的四個頂點恰好是一邊長為2,
一內(nèi)角為的菱形的四個頂點,
所以,橢圓的方程為                                     4分
(II)設(shè)因為的垂直平分線通過點, 顯然直線有斜率,
當(dāng)直線的斜率為時,則的垂直平分線為軸,則
所以
因為,
所以,當(dāng)且僅當(dāng)時,取得最大值為       7分
當(dāng)直線的斜率不為時,則設(shè)的方程為
所以,代入得到
當(dāng),            即                         
方程有兩個不同的解
                                       8分
所以,
,化簡得到                     
代入,得到                                                    10分
又原點到直線的距離為

所以
化簡得到                                             12分        
因為,所以當(dāng)時,即時,取得最大值
綜上,面積的最大值為
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知左焦點為的橢圓過點.過點分別作斜率為的橢圓的動弦,設(shè)分別為線段的中點.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若為線段的中點,求;
(3)若,求證直線恒過定點,并求出定點坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知分別是橢圓的左、右頂點,點在橢圓上,且直線與直線的斜率之積為
(Ⅰ)求橢圓的方程;
(Ⅱ)如圖,已知是橢圓上不同于頂點的兩點,直線交于點,直線交于點.① 求證:;② 若弦過橢圓的右焦點,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知橢圓C: 的左、右焦點分別為,離心率為,點A是橢圓上任一點,的周長為.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過點任作一動直線l交橢圓C于兩點,記,若在線段上取一點R,使得,則當(dāng)直線l轉(zhuǎn)動時,點R在某一定直線上運(yùn)動,求該定直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知、是橢圓的左、右焦點,且離心率,點為橢圓上的一個動點,的內(nèi)切圓面積的最大值為.
(1) 求橢圓的方程;
(2) 若是橢圓上不重合的四個點,滿足向量共線,
線,且,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓C:的左、右焦點分別為F1、F2,上頂點為A,△AF1F2為正三角形,且以線段F1F2為直徑的圓與直線相切.
(Ⅰ)求橢圓C的方程和離心率e;
(Ⅱ)若點P為焦點F1關(guān)于直線的對稱點,動點M滿足. 問是否存在一個定點T,使得動點M到定點T的距離為定值?若存在,求出定點T的坐標(biāo)及此定值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,已知過橢圓的左頂點作直線軸于點,交橢圓于點,若是等腰三角形,且,則橢圓的離心率為         .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標(biāo)系中,已知橢圓的中心在原點,焦點在軸上,短軸長為,離心率為.
(I)求橢圓的方程;
(II) 為橢圓上滿足的面積為的任意兩點,為線段的中點,射線交橢圓與點,設(shè),求實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

中心在坐標(biāo)原點,焦點在軸上的橢圓的離心率為,且經(jīng)過點。若分別過橢圓的左右焦點、的動直線相交于P點,與橢圓分別交于A、B與C、D不同四點,直線OA、OB、OC、OD的斜率、、滿足

(1)求橢圓的方程;
(2)是否存在定點M、N,使得為定值.若存在,求出M、N點坐標(biāo);若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案