(本小題滿分14分)設(shè)橢圓與拋物線的焦點均在軸上,的中心和的頂點均為原點,從每條曲線上至少取兩個點,將其坐標記錄于下表中:












 
1)求的標準方程, 并分別求出它們的離心率;
2)設(shè)直線與橢圓交于不同的兩點,且(其中坐標原點),請問是否存在這樣的直線過拋物線的焦點若存在,求出直線的方程;若不存在,請說明理由.
(1),,。(2)

試題分析:(1)∵焦點在x軸上,且橢圓與拋物線的中心與頂點在原點,又過點,
故點在橢圓上,點在拋物線
,
∴點上,
設(shè)
把點代入得,

由拋物線
(2)由
若l與x軸垂直,則l:x=1

設(shè)不滿足
若存在直線l不與x軸垂直,可設(shè)為
設(shè)


    

      
所求的直線為
點評:(1)做第一問的關(guān)鍵是確定哪兩個點在橢圓上,哪兩個點在拋物線上。(2)在求直線與圓錐曲線相交的有關(guān)問題時,通常采用設(shè)而不求的方法,在求解過程中一般采取步驟為:設(shè)點→聯(lián)立方程→消元→韋達定理。
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

設(shè)橢圓的左焦點為F, 離心率為, 過點F且與x軸垂直的直線被橢圓截得的線段長為.
(Ⅰ) 求橢圓的方程;
(Ⅱ) 設(shè)A, B分別為橢圓的左右頂點, 過點F且斜率為k的直線與橢圓交于C, D兩點. 若, 求k的值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知橢圓的離心率,其中一個頂點坐標為,則橢圓的方程為                      .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知曲線上任意一點到兩個定點,的距離之和為4.
(1)求曲線的方程;
(2)設(shè)過(0,-2)的直線與曲線交于兩點,且為原點),求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知, 是橢圓的兩個焦點,點在此橢圓上且,則的面積等于(    )
A.B.C.2D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設(shè)是橢圓的兩個焦點,點M在橢圓上,若△是直角三角形,則△的面積等于(  )
A.48/5B.36/5C.16D.48/5或16

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

在橢圓(a>)中,記左焦點為F,右頂點為A,短軸上方的端點為B,若角,則橢圓的離心率為( )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

若橢圓的離心率為,焦點在軸上,且長軸長為10,曲線上的點與橢圓的兩個焦點的距離之差的絕對值等于4.
(1)求橢圓的標準方程;
(2)求曲線的方程。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分16分)
如圖,橢圓C:=1(a>b>0)的焦點F1,F(xiàn)2和短軸的一個端點A構(gòu)成等邊三角形,
點(,)在橢圓C上,直線l為橢圓C的左準線.
(1) 求橢圓C的方程;
(2) 點P是橢圓C上的動點,PQ ⊥l,垂足為Q.
是否存在點P,使得△F1PQ為等腰三角形?
若存在,求出點P的坐標;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案