【題目】如圖,在棱臺中, 分別是棱長為1與2的正三角形,平面平面,四邊形為直角梯形, , 中點,

(Ⅰ)是否存在實數(shù)使得平面?若存在,求出的值;若不存在,請說明理由;

(Ⅱ)在 (Ⅰ)的條件下,求直線與平面所成角的正弦值.

【答案】(1)當(dāng),即中點時平面,(2)

【解析】試題分析】(1)運用線面平行的判定定理進(jìn)行分析推證;(2)建立空間直角坐標(biāo)系,運用空間向量的坐標(biāo)形式的運算及空間向量的數(shù)量積公式進(jìn)行求解:

解:(1)當(dāng),即中點時平面,

中點,連

平面

平面

所以,平面平面平面

(2)取中點,連

平面,

軸, 軸, 軸,建立直角坐標(biāo)系

, , , ,所以

, ,

設(shè)為平面的法向量,則

所以,直線與平面的正弦值為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知正三棱臺上底邊為3,下底邊為6,高為1,求斜高與側(cè)棱長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2017年某市街頭開始興起“mobike”、“ofo”等共享單車,這樣的共享單車為很多市民解決了最后一公里的出行難題.然而,這種模式也遇到了一些讓人尷尬的問題,比如亂停亂放,或?qū)⒐蚕韱诬囌紴椤八接小钡龋疄榇,某機(jī)構(gòu)就是否支持發(fā)展共享單車隨機(jī)調(diào)查了50人,他們年齡的分布及支持發(fā)展共享單車的人數(shù)統(tǒng)計如下表:

年齡

受訪人數(shù)

5

6

15

9

10

5

支持發(fā)展共享單車人數(shù)

4

5

12

9

7

3

(Ⅰ)由以上統(tǒng)計數(shù)據(jù)填寫下面的列聯(lián)表,并判斷能否在犯錯誤的概率不超過0.1的前提下,認(rèn)為年齡與是否支持發(fā)展共享單車有關(guān)系:

年齡低于35歲

年齡不低于35歲

合計

支持

不支持

合計

(Ⅱ)若對年齡在的被調(diào)查人中隨機(jī)選取兩人,對年齡在的被調(diào)查人中隨機(jī)選取一人進(jìn)行調(diào)查,求選中的3人中支持發(fā)展共享單車的人數(shù)為2人的概率.

參考數(shù)據(jù):

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

參考公式: ,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】天然氣是較為安全的燃?xì)庵唬缓谎趸,也比空氣輕,一旦泄露,立即會向上擴(kuò)散,不易積累形成爆炸性氣體,安全性較高,其優(yōu)點有:①綠色環(huán)保;②經(jīng)濟(jì)實惠;③安全可靠;④改善生活. 某市政府為了節(jié)約居民天然氣,計劃在本市試行居民天然氣定額管理,即確定一個居民年用氣量的標(biāo)準(zhǔn),為了確定一個較為合理的標(biāo)準(zhǔn),必須先了解全市居民日常用氣量的分布情況,現(xiàn)采用抽樣調(diào)查的方式,獲得了位居民某年的用氣量(單位:立方米),樣本統(tǒng)計結(jié)果如下圖表.

(1)分布求出的值;

(2)若從樣本中年均用氣量在(單位:立方米)的5位居民中任選2人作進(jìn)一步的調(diào)查研究,求年均用氣量最多的居民被選中的概率(5位居民的年均用氣量均不相等).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的焦點在軸上,且橢圓的焦距為2.

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)過點的直線與橢圓交于兩點,過軸且與橢圓交于另一點, 為橢圓的右焦點,求證:三點在同一條直線上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知sinα+cosα= ,α∈(0, ),sin(β﹣ )= ,β∈( , ).
(1)求sin2α和tan2α的值;
(2)求cos(α+2β)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在數(shù)列{an}中,a1=1,an+1=2an+2n
(1)設(shè)bn= .證明:數(shù)列{bn}是等差數(shù)列;
(2)求數(shù)列{an}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,某村積極開展“美麗鄉(xiāng)村生態(tài)家園”建設(shè),現(xiàn)擬在邊長為1千米的正方形地塊ABCD上劃出一片三角形地塊CMN建設(shè)美麗鄉(xiāng)村生態(tài)公園,給村民休閑健身提供去處.點M,N分別在邊AB,AD上. (Ⅰ)當(dāng)點M,N分別是邊AB,AD的中點時,求∠MCN的余弦值;
(Ⅱ)由于村建規(guī)劃及保護(hù)生態(tài)環(huán)境的需要,要求△AMN的周長為2千米,請?zhí)骄俊螹CN是否為定值,若是,求出此定值,若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,網(wǎng)格紙上小正方形的邊長為1,粗線畫出的是某四面體的三視圖,則該四面體的外接球半徑為(
A.2
B.
C.
D.2

查看答案和解析>>

同步練習(xí)冊答案