已知命題P:函數(shù)=﹣x在定義域-∞,+∞)上單調(diào)遞增; 命題Q:不等式對(duì)任意實(shí)數(shù)恒成立
(1).若是真命題,求實(shí)數(shù)的取值范圍
(2). 已知函數(shù)=﹣x在定義域-∞,+∞上單調(diào)遞增, 且∈-∞,+∞,寫(xiě)出命題:“若+1>0,則+>+” 的逆命題. 否命題.逆否命題,并分別判斷逆命題. 否命題.逆否命題的真假(不要證明).
解∵命題P函數(shù)=﹣x在定義域上單調(diào)遞增;
∴……………………………………………………………………(1分)
又∵命題Q不等式對(duì)任意實(shí)數(shù)恒成立;
∴………………………………………………………………………(2分)
或,∴-2 << 2………………………………………(4分)
即……………………………………………………………(5分)
∵是真命題,∴的取值范圍是………………………(6分)
(2)原命題: 已知函數(shù)=﹣x在定義域-∞,+∞上單調(diào)遞增, 且∈-∞,+∞ ,若+1>0,則+>+
逆命題: 已知函數(shù)=﹣x在定義域-∞,+∞上單調(diào)遞增, 且∈-∞,+∞,若+>+,則+1>0
真命題………………………………(8分)
否命題: 已知函數(shù)=﹣x在定義域-∞,+∞上單調(diào)遞增, 且∈-∞,+∞,若+1≤0,則+≤+
真命題………………………………(10分)
逆否命題: 已知函數(shù)=﹣x在定義域-∞,+∞上單調(diào)遞增, 且∈-∞,+∞,若+≤+,則+1≤0
真命題…… ……………………………………… .(12分)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知命題p:函數(shù)f(x)=log0.5(3-x)的定義域?yàn)?-∞,3);命題q:若k<0,則函數(shù)h(x)=在(0,+∞)上是減函數(shù).對(duì)以上兩個(gè)命題,下列結(jié)論正確的是( ).
A.命題“p且q”為真 B.命題“p或q”為假
C.命題“p或q”為假 D.命題“p且q”為假
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014屆遼寧省丹東市高二上學(xué)期期末考試文數(shù)試卷(解析版) 題型:解答題
(本小題滿分10分)已知命題p:函數(shù)在R上是減函數(shù);命題q:在平面直角坐標(biāo)系中,點(diǎn)在直線的左下方。若為假,為真,求實(shí)數(shù)的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010-2011年江西省高二下學(xué)期第一次月考數(shù)學(xué)文卷 題型:解答題
(本小題滿分12分)已知命題p:函數(shù)f(x)=loga|x|在(0,+∞)上單調(diào)遞增,命題q:關(guān)于x的方程x2+2x+loga=0的解集只有一個(gè)子集,p∨q為真,(¬p)∨(¬q)也為真,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com