5.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{log_2}x,x>0\\{4^x},x≤0\end{array}$,則f(f(-2))的值為-4.

分析 由已知先求出f(-2)=4-2=$\frac{1}{16}$,從而f(f(-2))=f($\frac{1}{16}$),由此能求出結(jié)果.

解答 解:∵函數(shù)f(x)=$\left\{\begin{array}{l}{log_2}x,x>0\\{4^x},x≤0\end{array}$,
∴f(-2)=4-2=$\frac{1}{16}$,
f(f(-2))=f($\frac{1}{16}$)=$lo{g}_{2}\frac{1}{16}$=-4.
故答案為:-4.

點評 本題考查函數(shù)值的求法,是基礎(chǔ)題,解題時要認真審題,注意函數(shù)性質(zhì)的合理運用.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

15.已知點$P(2,2\sqrt{2})$在拋物線C:y2=2px(p>0)上,設(shè)拋物線C的焦點為F,準線為l,
(1)求F的坐標和準線l的方程;
(2)若過點F的直線l1與拋物線C交于A,B兩點,且|AB|=8,求直線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.若目標函數(shù)z=ax+by(a>0,b>0)滿足約束條件$\left\{\begin{array}{l}{2x-y-6≤0}\\{x-y+2≥0}\end{array}\right.$且最大值為40,則$\frac{5}{a}$+$\frac{1}$的最小值為$\frac{9}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知數(shù)列{an}的前n項和為Sn,a1=1,且nan+1=2Sn(n∈N*),數(shù)列{bn}滿足b1=$\frac{1}{2}$,b2=$\frac{1}{4}$,對任意n∈N+,都有bn+12=bn•bn+2
(I)求數(shù)列{an},{bn}的通項公式;
(II)設(shè){anbn}的前n項和為Tn,若Tn>$\frac{4-λ}{2}$對任意的n∈N+恒成立,求λ得取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.如圖,在正方體ABCD-A1B1C1D1中,AB=2,平面α經(jīng)過B1D1,直線AC1∥α,則平面α截該正方體所得截面的面積為( 。
A.2$\sqrt{3}$B.$\frac{3\sqrt{2}}{2}$C.$\frac{\sqrt{34}}{2}$D.$\sqrt{6}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知函數(shù)f(x)=$\sqrt{x+5}$+$\frac{1}{x-2}$.
(1)求函數(shù)的定義域;
(2)求f(-4),f($\frac{2}{3}$)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.設(shè)等差數(shù)列{an}的前n項和為Sn,S12<0,S13>0,則Sn的最小值為( 。
A.S5B.S6C.S7D.S8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.把函數(shù)y=sin(2x+$\frac{π}{4}$)(x∈R)的圖象上所有的點向左平移$\frac{π}{4}$個單位長度后,再向上平移2個單位,得到的圖象所表示的函數(shù)是( 。
A.y=cos2x+2B.y=sin(2x+$\frac{3π}{4}$)+2C.y=sin2x+2D.y=sin(2x-$\frac{π}{4}$)+2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.已知函數(shù)f(x)=-(x-1)+log2$\frac{1-x}{1+x}$,則f($\frac{1}{2016}$)+f(-$\frac{1}{2016}$)=2.

查看答案和解析>>

同步練習冊答案