解答:解:(Ⅰ)f'(x)=(ax
2+2ax-1)•e
x.x∈R…(2分)
依題意得f'(1)=(3a-1)•e=0,解得
a=.經(jīng)檢驗(yàn)符合題意.…(4分)
(Ⅱ)f'(x)=(ax
2+2ax-1)•e
x,設(shè)g(x)=ax
2+2ax-1,
(1)當(dāng)a=0時(shí),f(x)=-e
x,f(x)在(-∞,+∞)上為單調(diào)減函數(shù).…(5分)
(2)當(dāng)a<0時(shí),方程g(x)=ax
2+2ax-1=0的判別式為△=4a
2+4a,
令△=0,解得a=0(舍去)或a=-1.
1°當(dāng)a=-1時(shí),g(x)=-x
2-2x-1=-(x+1)
2≤0,
即f'(x)=(ax
2+2ax-1)•e
x≤0,
且f'(x)在x=-1兩側(cè)同號,僅在x=-1時(shí)等于0,
則f(x)在(-∞,+∞)上為單調(diào)減函數(shù).…(7分)
2°當(dāng)-1<a<0時(shí),△<0,則g(x)=ax
2+2ax-1<0恒成立,
即f'(x)<0恒成立,則f(x)在(-∞,+∞)上為單調(diào)減函數(shù).…(9分)
3°a<-1時(shí),△=4a
2+4a>0,令g(x)=0,
方程ax
2+2ax-1=0有兩個(gè)不相等的實(shí)數(shù)根
x1=-1+,
x2=-1-,
作差可知
-1->-1+,
則當(dāng)
x<-1+時(shí),g(x)<0,f'(x)<0,f(x)在
(-∞,-1+)上為單調(diào)減函數(shù);
當(dāng)
-1+<x<-1-時(shí),g(x)>0,f'(x)>0,f(x)在
(-1+,-1-)上為單調(diào)增函數(shù);
當(dāng)
x>-1-時(shí),g(x)<0,f'(x)<0,f(x)在
(-1-,+∞)上為單調(diào)減函數(shù).…(13分)
綜上所述,當(dāng)-1≤a≤0時(shí),函數(shù)f(x)的單調(diào)減區(qū)間為(-∞,+∞);當(dāng)a<-1時(shí),函數(shù)f(x)的單調(diào)減區(qū)間為
(-∞,-1+),
(-1-,+∞),函數(shù)f(x)的單調(diào)增區(qū)間為
(-1+,-1-).…(14分)