函數(shù)y=x(|x|-1)的圖象是(  )
A、
B、
C、
D、
考點:函數(shù)的圖象
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)函數(shù)的奇偶性即可判斷
解答: 解:∵f(x)=x(|x|-1),
∴f(-x)=-x(|-x|-1)=-f(x),
∴函數(shù)f(x)為奇函數(shù),
∴圖象關(guān)于原點對稱,
故選:D
點評:本題考查了函數(shù)圖象的識別,根據(jù)函數(shù)的奇偶性,周期性,定義域,值域,單調(diào)性是常用的方法,屬于基礎(chǔ)題
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標系里,設(shè)集合M={m|m是直線Ax+By=0,其中A2+B2≠0且A,B∈R},N={n|n是直線y=kx,其中k∈R},則集合M,N的關(guān)系是( 。
A、M=NB、M⊆N
C、M?ND、以上都不對

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
log2x,x>1
3x,x≤1
,則f(1)+f(2)=(  )
A、1B、4C、9D、12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x||x-1|≤3,x∈R},B={x|ln
6
x+1
≥0,x∈Z},則A∩B=( 。
A、{x|0<x≤4,x∈Z}
B、{x|0≤x≤4,x∈Z}
C、{x|-2≤x≤0,x∈Z}
D、{x|-2≤x<0,x∈Z}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an},對任何正整數(shù)n都有:a1•1+a2•2+a3•22+…+an•2n-1=(n-1)•2n+1.
(1)求數(shù)列{an}的通項公式;
(2)①若λ≥
7an-2
2an
(n∈N+)恒成立,求實數(shù)λ的范圍;
②若數(shù)列{bn}滿足bn=|(-1)n•2an+7-2an|,求數(shù)列{bn}的前項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}中,滿足a2=4,a3=6,其前n項和Sn滿足Sn=an2+bn(a,b∈R).
(1)求實數(shù)a,b的值,并求數(shù)列{an}的通項公式;
(2)若數(shù)列{
1
Sn
+bn}是首項為a,公比為2b的等比數(shù)列,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

經(jīng)過點A(3,1)作直線l,它與雙曲線
x2
9
-y2=1只有一個公共點,這樣的直線l有
 
條.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=sin(2x+
π
3
)-sin(2x-
π
4
)的遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}滿足a1=0且an+1=
1
2-an
.n∈N*
(1)求證數(shù)列{
1
1-an
}是等差數(shù)列,并求數(shù)列{an}的通項公式;
(2)設(shè)bn=
1-
an+1
n
,Sn為數(shù)列{bn}的前n項和,證明:Sn<1.

查看答案和解析>>

同步練習(xí)冊答案