已知.,其中、為銳角,且.
(1)求的值;
(2)若,求及的值.
(1);(2),.
解析試題分析:(1)要求的值,由于,因此我們尋找這兩個(gè)積(或積的和),這只能應(yīng)用唯一的已知條件,由兩點(diǎn)間距離公式可得;(2)已知,要求,可直接利用公式,而要求,要注意靈活應(yīng)用兩角和與差的正弦與余弦公式,我們要把看作為,因此有,從而只要求出和,在求解過程中,的值是確定的,但的值是一確定的(有兩解,至少在開始求解時(shí)是這樣的),只是在求時(shí),要舍去不符合題意的結(jié)論.
試題解析:(1)由,得,
得,得. 4分
(2),. 6分
, 10分
當(dāng)時(shí),.
當(dāng)時(shí),.
為銳角, 14分
考點(diǎn):(1)兩點(diǎn)間的距離公式與兩角差的余弦公式;(2)平方關(guān)系與兩角差的余弦公式.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知為第三象限角,.
(1)化簡(jiǎn);
(2)設(shè),求函數(shù)的最小值,并求取最小值時(shí)的的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知.
(Ⅰ)求的最大值及取得最大值時(shí)x的值;
(Ⅱ)在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,若,,,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)。
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)在△ABC中,若A為銳角,且=1,BC=2,B=,求AC邊的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com