在△ABC中,已知tanA,tanB是方程3x2-7x+2=0的兩個(gè)實(shí)根,則tanC=
-7
-7
分析:首先根據(jù)韋達(dá)定理表示出兩根之和tanA+tanB與兩根之積tanAtanB,然后根據(jù)三角形的內(nèi)角和為π,把角C變形為π-(A+B),利用誘導(dǎo)公式化簡(jiǎn)后,然后再利用兩角和的正切函數(shù)公式化簡(jiǎn),把tanA+tanB與tanAtanB代入即可求出值.
解答:解:∵tanA,tanB是方程3x2-7x+2=0的兩個(gè)根,
則tanA+tanB=
7
3
,tanAtanB=
2
3
,
∴tanC=tan[π-(A+B)]=-tan(A+B)=-
tanA+tanB
1-tanAtanB
=-
7
3
1-
2
3
=-7
故答案為:-7
點(diǎn)評(píng):此題考查學(xué)生靈活運(yùn)用韋達(dá)定理、誘導(dǎo)公式及兩角和的正切函數(shù)公式化簡(jiǎn)求值,本題解題的關(guān)鍵是利用三角形本身的隱含條件,即三角形內(nèi)角和是180°
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,已知B(-3,0),C(3,0),D為線(xiàn)段BC上一點(diǎn),
AD
BC
=0
,H是△ABC的垂心,且
AH
=3
HD

(Ⅰ)求點(diǎn)H的軌跡M的方程;
(Ⅱ)若過(guò)C點(diǎn)且斜率為-
1
2
的直線(xiàn)與軌跡M交于點(diǎn)P,點(diǎn)Q(t,0)是x軸上任意一點(diǎn),求當(dāng)△CPQ為銳角三角形時(shí)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:南通高考密卷·數(shù)學(xué)(理) 題型:013

在△ABC中,已知三邊a,b,c成等差數(shù)列,且有sinB+cosB=t,則t的取值范圍是

[  ]

A.(0,)
B.(1,)
C.(0,1)
D.(,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:上杭一中、武平一中、長(zhǎng)汀一中、漳平一中2006-2007學(xué)年第一學(xué)期高三期末考數(shù)學(xué)試題(理) 題型:044

在△ABC中,已知B(-3,0),C(3,0),D為線(xiàn)段BC上一點(diǎn),是△ABC的垂心,且

(1)求點(diǎn)H的軌跡M的方程;

(2)若過(guò)C點(diǎn)且斜率為的直線(xiàn)與軌跡M交于點(diǎn)P,點(diǎn)Q(t,0)是x軸上任意一點(diǎn),

求:當(dāng)△CPQ為銳角三角形時(shí)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2004年江蘇省無(wú)錫市高三調(diào)研數(shù)學(xué)試卷(解析版) 題型:解答題

在△ABC中,已知B(-3,0),C(3,0),D為線(xiàn)段BC上一點(diǎn),,H是△ABC的垂心,且
(Ⅰ)求點(diǎn)H的軌跡M的方程;
(Ⅱ)若過(guò)C點(diǎn)且斜率為的直線(xiàn)與軌跡M交于點(diǎn)P,點(diǎn)Q(t,0)是x軸上任意一點(diǎn),求當(dāng)△CPQ為銳角三角形時(shí)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:江蘇省陸慕高級(jí)中學(xué)09-10學(xué)年高二上學(xué)期第一次測(cè)試 題型:解答題

 

在△ABC中,已知

  (Ⅰ) 求證: ||=||;

(Ⅱ) 若||=||=,求|t|的最小值以及相應(yīng)的t的值.

 

 

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案