某市規(guī)定中學(xué)生百米成績達(dá)標(biāo)標(biāo)準(zhǔn)為不超過16秒.現(xiàn)從該市中學(xué)生中按照男、女生比例隨機(jī)抽取了50人,其中有30人達(dá)標(biāo).將此樣本的頻率估計為總體的概率.
(1)隨機(jī)調(diào)查45名學(xué)生,設(shè)ξ為達(dá)標(biāo)人數(shù),求ξ的數(shù)學(xué)期望與方差;
(2)如果男、女生采用相同的達(dá)標(biāo)標(biāo)準(zhǔn),男、女生達(dá)標(biāo)情況如下表:
總計
達(dá)標(biāo)a=24b=
 
 
不達(dá)標(biāo)c=
 
d=12
 
總計
 
 
n=50
根據(jù)表中所給的數(shù)據(jù),完成2×2列聯(lián)表,并判斷能否有99%的把握認(rèn)為“體育達(dá)標(biāo)與性別有關(guān)”?若有,你能否給出一個更合理的達(dá)標(biāo)方案?
P(K2≥k00.0500.0100.001
k03.8416.63510.828
參考公式:K2=
n(ad-bc)2
(a+c)(b+d)(a+b)(c+d)
考點:獨立性檢驗的應(yīng)用
專題:應(yīng)用題,概率與統(tǒng)計
分析:(1)ξ~B(45,0.6),利用公式Eξ=np,Dξ=np(1-p);
(2)完成表格后求k,即可求出結(jié)果.
解答: 解:由題意可知,隨機(jī)抽取1人,則此人百米成績達(dá)標(biāo)的概率為
30
50
=0.6.
(1)由題設(shè)可知,ξ~B(45,0.6)
故E(ξ)=45×0.6=27,D(ξ)=45×0.6×0.4=10.8.
(2)
總計
達(dá)標(biāo)a=24b=630
不達(dá)標(biāo)c=8d=1220
總計3218n=50
k=
50×(24×12-6×8)2
32×18×30×20
≈8.333>6.635,
所以在犯錯誤的概率不超過0.01的前提下認(rèn)為“體育達(dá)標(biāo)與性別有關(guān)”.故男、女生要使用不同的達(dá)標(biāo)標(biāo)準(zhǔn).
點評:本題重點考查二項分布模型,考查獨立性檢驗,利用公式,正確計算是關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)
a
=(cosα,(λ-1)sinα),
b
=(cosβ,sinβ),(λ>0,0<α<β<
π
2
)是平面上的兩個向量,若向量
a
+
b
a
-
b
相互垂直,
(Ⅰ)求實數(shù)λ的值;
(Ⅱ)若
a
b
=
4
5
,且tanα=
1
4
,求tanβ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知P為橢圓C:
x2
12
+
y2
b2
=1﹙0<b<2
3
﹚上異于長軸端點A、B的任意一點,PH⊥x軸,H為垂足,延長HP到Q,使
HP
=
PQ
,此時Q恰好在以AB為直徑的圓上.
(1)求橢圓C的方程;
(2)若F1、F2為橢圓C的左右焦點,N(0,3),請問在橢圓C上是否存在一點M,使MN-MF1最小,若存在,求出最小值及此時的M點的坐標(biāo),若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

學(xué)校在高二開設(shè)了當(dāng)代戰(zhàn)爭風(fēng)云、投資理財、汽車模擬駕駛與保養(yǎng)、硬筆書法共4門選修課,每個學(xué)生必須且只需選修1門選修課,對于該年級的甲、乙、丙3名學(xué)生.
(Ⅰ)求這3名學(xué)生選擇的選修課互不相同的概率;
(Ⅱ)求恰有2門選修課沒有被這3名學(xué)生選擇的概率;
(Ⅲ)求投資理財選修課被這3名學(xué)生選擇的人數(shù)的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知tanα=3,計算
4sinα-2cosα
5cosα+3sinα
 的值;
(2)已知f(α)=
sin(5π-α)•cos(α+
2
)•cos(π+α)
sin(α-
2
)•cos(α+
π
2
)•tan(α-3π)
化簡f(α).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a,b,c∈R,a>b>c,且a+b+c=0.
(1)求證:a>0;
(2)求證:ab+bc+ca<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)設(shè)f(α)=1-tanα•sin(α-2π)cosα,化簡f(α);
(2)若角α=-
17π
4
,求f(α)式的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=
3
sinx+cosx.
(1)將函數(shù)寫成y=Asin(ωx+φ)的形式;
(2)當(dāng)函數(shù)的定義域為[
π
2
,
3
]時,求函數(shù)的最小值和最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

有以下命題:
①命題“存在x∈R,x2-x-2≥0”的否定是:“不存在x∈R,x2-x-2<0”;
②線性回歸直線
y
=
b
x+
a
恒過樣本中心(
.
x
,
y
),且至少過一個樣本點.
③函數(shù)f(x)=e-x-ex圖象的切線斜率的最大值是-2;
④函數(shù)f(x)=x
1
3
-(
1
2
)x
的零點在區(qū)間(
1
3
,
1
2
)內(nèi);
其中正確命題的序號為
 

查看答案和解析>>

同步練習(xí)冊答案