14.若函數(shù)f(x)=2x的值域是[4,+∞),則實(shí)數(shù)x的取值范圍為[2,+∞).

分析 根據(jù)指數(shù)函數(shù)的單調(diào)性即可求出.

解答 解:函數(shù)f(x)=2x
在定義域內(nèi)為增函數(shù),
∴2x≥4,
∴x≥2.
∴實(shí)數(shù)x的取值范圍為[2,+∞)
故答案為:[2,+∞).

點(diǎn)評(píng) 本題考查了對(duì)數(shù)函數(shù)的性質(zhì),屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.復(fù)數(shù)z=$\frac{a+i}{1-i}$(a∈R,i為虛數(shù)單位),若z是純虛數(shù),則復(fù)數(shù)z的模為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知函數(shù)f(x)=4-log2x,x∈[2,8],則f(x)的值域是[1,3].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.設(shè)集合A={1,2,3,4},B={3,4,5},則集合A∩B=(  )
A.{1,2,4}B.{1,2,5}C.{3,4}D.{3,4,5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.在正方體ABCD-A1B1C1D1中,直線BB1與平面ACD1所成角的余弦值為( 。
A.$\frac{\sqrt{6}}{3}$B.$\frac{\sqrt{3}}{3}$C.$\frac{2}{3}$D.$\frac{\sqrt{2}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知函數(shù)f(x)=|x2+2x|,x∈R,若方程f(x)-a|x-1|=0恰有4個(gè)互異的小于1的實(shí)數(shù)根,則實(shí)數(shù)a的取值范圍為(0,4-2$\sqrt{3}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的焦距為2$\sqrt{5}$,且雙曲線的一條漸近線與直線2x+y=0垂直,則雙曲線的方程為$\frac{{x}^{2}}{4}-{y}^{2}=1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.6名大學(xué)畢業(yè)省先分成三組,其中兩組各1人,一組4人,再分配到3個(gè)不同的工作崗位實(shí)習(xí),則符合條件的不同分法數(shù)為90.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知雙曲線的中心在原點(diǎn),焦點(diǎn)F1、F2在坐標(biāo)軸上,焦距是實(shí)軸長的$\sqrt{2}$倍且過點(diǎn)(4,-$\sqrt{10}$)
(1)求雙曲線方程;
(2)若點(diǎn)M(3,m)在雙曲線上,求證:點(diǎn)M在以F1F2為直徑的圓上;
(3)在(2)條件下,若M F2交雙曲線另一點(diǎn)N,求△F1MN的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案