已知△ABC是等腰三角形,∠ABC=120°,以A,B為焦點的雙曲線過點C,則雙曲線的離心率為( 。
A、1+
2
B、1+
3
C、
1+
2
2
D、
1+
3
2
考點:雙曲線的簡單性質(zhì)
專題:計算題,圓錐曲線的定義、性質(zhì)與方程
分析:根據(jù)題設(shè)條件可知2c=|AB|=|BC|,由余弦定理可得|AC|,再由雙曲線的定義可得2a,再由離心率公式計算即可得到.
解答: 解:由題意可得,2c=|AB|=|BC|,
所以由余弦定理得,|AC|=
|AB|2+|BC|2-2|AB|•|BC|•cos120°

=
4c2+4c2-8c2×(-
1
2
)
=2
3
c.
由雙曲線的定義,有2a=|AC|-|BC|=(2
3
-2)c,
∴e=
c
a
=
1
3
-1
=
3
+1
2

故選D.
點評:本題考查雙曲線的定義和離心率的求法,考查余弦定理的運用,考查運算能力,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=
2
3x+1
-a是奇函數(shù),則實數(shù)a的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
lnx
1+x
-lnx,則有下列結(jié)論中錯誤的是( 。
A、?x0∈R,f(x)=0
B、若x0是f(x)的最大值點,則f(x0)=x0
C、若x0是f(x)的最大值點,則f(x0)<
1
2
D、若x0是f(x)的極大值點,則f(x)在(x0,+∞)上單調(diào)遞增

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
x2+x,x≤0
-x2,x>0
若f(f(t))≤2,則實數(shù)t的取值范圍是(  )
A、(-∞,
2
]
B、[
2
,+∞)
C、(-∞,-2]
D、[-2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,己知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0
)的離心率e=
2
2
,左、右焦點分別為F1,F(xiàn)2,拋物線y2=4
2
x的焦點恰好是該橢圓的一個頂點.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若斜率為k(k≠0)的直線與x軸、橢圓順次交于A(2,0)、M、N三點.求證∠NF2F1=∠MF2A.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C:x2+y2+8x+ay-5=0經(jīng)過拋物線E:x2=4y的焦點,則拋物線E的準(zhǔn)線與圓C相交所得的弦長為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點P(3,m)在直線x+y-1=0上,則m的值為( 。
A、5B、2C、-2D、-6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

執(zhí)行如圖所示的程序框圖,輸出的s值為(  )
A、-3
B、-
1
2
C、2
D、
1
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用邊長為1的小正方形搭如下的塔狀圖形,請你根據(jù)圖形所反映的規(guī)律解答下列問題:

(1)填寫下表:
圖形序號12345
所搭圖形的周長4812  
(2)第n個圖形的周長是
 
(用含n的代數(shù)式表示)
(3)如果第m個圖形的周長恰好等于2020,請求出m的值.

查看答案和解析>>

同步練習(xí)冊答案