19.莊子說:“一尺之錘,日取其半,萬世不竭”,這句話描述的是一個數(shù)列問題,現(xiàn)用程序框圖描述,如圖所示,若輸入某個正整數(shù)n后,輸出的S∈($\frac{15}{16}$,$\frac{63}{64}$),則輸入的n的值為( 。
A.7B.6C.5D.4

分析 模擬程序的運行,依次寫出前幾次循環(huán)得到的S,k的值,由題意,說明當(dāng)算出的值S∈($\frac{15}{16}$,$\frac{63}{64}$)后進行判斷時判斷框中的條件滿足,即可求出此時的n值.

解答 解:框圖首先給累加變量S賦值0,給循環(huán)變量k賦值1,
輸入n的值后,執(zhí)行循環(huán)體,S=$\frac{1}{2}$,k=1+1=2;
判斷2>n不成立,執(zhí)行循環(huán)體,S=$\frac{3}{4}$,k=2+1=3;
判斷3>n不成立,執(zhí)行循環(huán)體,S=$\frac{7}{8}$,k=3+1=4;
判斷4>n不成立,執(zhí)行循環(huán)體,S=$\frac{15}{16}$,k=4+1=5.
判斷5>n不成立,執(zhí)行循環(huán)體,S=$\frac{31}{32}$,k=4+1=6.
判斷6>n不成立,執(zhí)行循環(huán)體,S=$\frac{63}{64}$,k=4+1=7.

由于輸出的S∈($\frac{15}{16}$,$\frac{63}{64}$),可得:當(dāng)S=$\frac{31}{32}$,k=6時,應(yīng)該滿足條件6>n,即:5≤n<6,
可得輸入的正整數(shù)n的值為5.
故選:C.

點評 本題考查了程序框圖中的循環(huán)結(jié)構(gòu),是直到型循環(huán),即先執(zhí)行后判斷,不滿足條件繼續(xù)執(zhí)行循環(huán),直到條件滿足跳出循環(huán),算法結(jié)束,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.設(shè) (1+i)( x-yi)=2,其中 x,y 是實數(shù),i 為虛數(shù)單位,則 x+y=( 。
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知直線m:x=-4,圓M:x2+y2+2x-8=0,P為平面內(nèi)一動點,若點P到圓心M的距離是到直線m距離的一半.
(1)動點P的軌跡是什么曲線?寫出該曲線的標(biāo)準(zhǔn)方程;
(2)設(shè)動點P的軌跡為曲線F,過點E(4,-3)作直線l與曲線F交于C、D兩點,并與直線x-y-1=0相交于點Q,問:$\frac{1}{|EC|}$、$\frac{1}{|EQ|}$、$\frac{1}{|ED|}$是否成等差數(shù)列?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.極坐標(biāo)系的極點在平面直角坐標(biāo)系的原點O處,極軸與x軸的正半軸重合,兩坐標(biāo)系單位長度相同.已知曲線的極坐標(biāo)方程為ρ=2cosθ+2sinθ,直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=2-t}\\{y=-1+t}\end{array}\right.$(t為參數(shù)).
(Ⅰ)將直線l的參數(shù)方程化為普通方程,將曲線C的極坐標(biāo)方程化為直角坐標(biāo)方程;
(Ⅱ)設(shè)曲線C上到直線l的距離為d的點的個數(shù)為f(d),求f(d)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.集合A={y|y=2x,x∈R},B={x∈Z|log6(x+2)<1},則A∩B=(  )
A.{x|0<x<4}B.{1,2,3}C.{0,1,2,3}D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.設(shè)雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$(a>0,b>0)的右焦點為F,過點F作x軸的垂線與雙曲線交于B,C兩點(點B在x軸上方),過點B作斜率為負數(shù)的漸近線的垂線,過點C作斜率為正數(shù)的漸近線的垂線,兩垂線交于點D,若D到直線BC的距離等于虛軸長,則雙曲線的離心率e等于(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.設(shè)二面角α-CD-β的大小為45°,A點在平面α內(nèi),B點在CD上,且∠ABC=45°,則AB與平面β所成角的大小為30°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.如圖,在正方形ABCD中,AD=4,E為DC上一點,且$\overrightarrow{DE}=3\overrightarrow{EC}$,則$\overrightarrow{AB}•\overrightarrow{AE}$=12.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知函數(shù)fn(x)=a1x+a2x2+a3x3+…+anxn,且fn(-1)=(-1)nn,n∈N*,設(shè)函數(shù)g(n)=$\left\{\begin{array}{l}{{a}_{n},n為奇數(shù)}\\{g(\frac{n}{2}),n為偶數(shù)}\end{array}\right.$,若bn=g(2n+4),n∈N*,則數(shù)列{bn}的前n(n≥2)項和Sn等于$\left\{\begin{array}{l}{6,n=2}\\{{2}^{n}+n,n≥3}\end{array}\right.$.

查看答案和解析>>

同步練習(xí)冊答案