【題目】由函數(shù)y=sin x 的圖象經(jīng)過( )變換,得到函數(shù) y=sin(2x﹣ )的圖象.
A.縱坐標不變,橫坐標縮小到原來的 ,再向右平移 個單位
B.縱坐標不變,向右平移 個單位,再橫坐標縮小到原來的
C.縱坐標不變,橫坐標擴大到原來的 2 倍,再向左平移 個單位
D.縱坐標不變,向左平移 個單位,再橫坐標擴大到原來的 2 倍
【答案】B
【解析】解:y=sinx的圖象向右平移 個單位可得y=sin(x﹣ )的函數(shù)圖象,
再將y=sin(x﹣ )的函數(shù)圖象縱坐標不變,橫坐標縮小為原來的 得到y(tǒng)=sin(2x﹣ )的函數(shù)圖象,
故選:B.
【考點精析】通過靈活運用函數(shù)y=Asin(ωx+φ)的圖象變換,掌握圖象上所有點向左(右)平移個單位長度,得到函數(shù)的圖象;再將函數(shù)的圖象上所有點的橫坐標伸長(縮短)到原來的倍(縱坐標不變),得到函數(shù)的圖象;再將函數(shù)的圖象上所有點的縱坐標伸長(縮短)到原來的倍(橫坐標不變),得到函數(shù)的圖象即可以解答此題.
科目:高中數(shù)學 來源: 題型:
【題目】對一批產(chǎn)品的長度(單位:mm)進行抽樣檢測,下圖為檢測結(jié)果的頻率分布直方圖.根據(jù)標準,產(chǎn)品長度在區(qū)間[20,25)上的為一等品,在區(qū)間[15,20)和區(qū)間[25,30)上的為二等品,在區(qū)間[10,15)和[30,35)上的為三等品.用頻率估計概率,現(xiàn)從該批產(chǎn)品中隨機抽取一件,則其為二等品的概率為( )
A.0.09
B.0.20
C.0.25
D.0.45
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知向量 =(cosα,sinα), =(cosβ,sinβ),0<β<α<π.
(1)若| ﹣ |= ,求證: ⊥ ;
(2)設c=(0,1),若 + =c,求α,β的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在直三棱柱ABC﹣A1B1C1中,∠ACB=90°.BC=CC1=a,AC=2a.
(1)求證:AB1⊥BC1;
(2)求二面角B﹣AB1﹣C的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在四棱錐P﹣ABCD中,底面ABCD是菱形,PA⊥底面ABCD,M是棱PC上一點.若PA=AC=a,則當△MBD的面積為最小值時,直線AC與平面MBD所成的角為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下面是被嚴重破壞的頻率分布表和頻率分布直方圖,根據(jù)殘表和殘圖,則 p= , q= .
分數(shù)段 | 頻數(shù) | |
[60,70) | p | |
[70,80) | 90 | |
[80,90) | 60 | |
[90,100] | 20 | q |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知 , , 是同一平面內(nèi)的三個向量,其中 =(﹣ ,1).
(1)若| |=2 且 ∥ ,求 的坐標;
(2)若| |= ,( +3 )⊥( ﹣ ),求向量 , 的夾角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,正方體ABCD﹣A1B1C1D1的棱線長為1,線段B1D1上有兩個動點E,F(xiàn),且EF= ,則下列結(jié)論中錯誤的是( )
A.AC⊥BE
B.EF∥平面ABCD
C.三棱錐A﹣BEF的體積為定值
D.異面直線AE,BF所成的角為定值
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}滿足a1=1,且an=2an﹣1+2n(n≥2,且n∈N*)
(1)求證:數(shù)列{ }是等差數(shù)列;
(2)求數(shù)列{an}的通項公式;
(3)設數(shù)列{an}的前n項之和Sn , 求證: .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com