等腰梯形ABCD的三邊AB,BC,CD分別與函數(shù),x∈[-2,2]的圖象切于點(diǎn)P,Q,R.求梯形ABCD面積的最小值.

答案:
解析:

  解:設(shè)梯形的面積為,點(diǎn)P的坐標(biāo)為

  由題意得,點(diǎn)的坐標(biāo)為,直線的方程為

  

  

                        3分

  ∴直線的方程為

  即:                   5分

  令  得,

  令  得,

  ∴            8分

  當(dāng)且僅當(dāng),即時(shí),取“=”且,

  ∴時(shí),有最小值為

  ∴梯形的面積的最小值為              12分


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,等腰梯形ABCD中,E,F(xiàn)分別是BC上三等分點(diǎn),AD=AE=1,BC=3,若把三角形ABE和DCF分別沿AE和DF折起,使得B、C兩點(diǎn)重合于一點(diǎn)P,則二面角P-AD-E的大小為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在等腰梯形ABCD中,AB=2DC=2,∠DAB=60°,E為AB的中點(diǎn),將△ADE與△BEC分別沿ED、EC向上折起,使A、B重合于點(diǎn)P,則三棱錐P-DCE的外接球的體積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在等腰梯形ABCD中,AB=2DC=2,∠DAB=60°,E為AB的中點(diǎn),將△ADE與△BEC分別沿ED、EC向上折起,使A、B重合于點(diǎn)P,則P-DCE三棱錐的外接球的體積為( 。
A、
4
3
π
27
B、
6
π
2
C、
6
π
8
D、
6
π
24

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

20、已知等腰梯形ABCD中,AB=2CD,
AE
EC
,橢圓過C、D、E三點(diǎn),且以A,B為焦點(diǎn).
(1)若AB=4,梯形的高為
3
5
2
,求橢圓方程;
(2)若-
1
3
≤λ≤-
1
4
,求橢圓離心率e的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知A(-2,0),B(2,0),等腰梯形ABCD滿足|AB|=-2|CD|,E為AC上一點(diǎn),且
AE
EC
.又以A、B為焦點(diǎn)的雙曲線過C、D、E三點(diǎn).若λ∈[
2
3
,
3
4
]
,則雙曲線離心率e的取值范圍為(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案