給出如下四個命題:
①若“p且q”為假命題,則p、q均為假命題;
②命題p:“
x
x-1
≥0”則¬p:“
x
x-1
<0”
③對分類變量X與Y的隨機變量K2的觀測值k來說,k越小,判斷“X與Y有關系”的把握越大;
④“x>0”是“x+
1
x
≥2”的充分必要條件.
其中正確的命題個數(shù)是( 。
A、1B、2C、3D、4
考點:命題的真假判斷與應用
專題:簡易邏輯
分析:直接由復合命題的真值表判斷①;寫出命題的否定判斷②;由分類變量X與Y的隨機變量K2的觀測值k的大小與“X與Y有關系”的把握程度判斷③;由充分必要條件的概念判斷④.
解答: 解:對于①,∵p,q中有一個為假命題,則“p且q”為假命題,
∴命題①錯誤;
對于②,命題p:“
x
x-1
≥0”則¬p:“
x
x-1
<0或x=1,”
∴命題②錯誤;
對于③,∵根據分類變量X與Y的隨機變量K2的觀測值k來說,k越小,“X與Y有關系”的可信程度越小,
∴命題③錯誤;
對于④,由x>0能得到x+
1
x
≥2,由x+
1
x
≥2能得到x>0,
∴“x>0”是“x+
1
x
≥2”的充分必要條件,
∴命題④正確.
∴正確命題的個數(shù)是1個.
故選:A.
點評:本題考查命題的真假判斷與運用,考查復合命題的真假判斷,解答此題的關鍵在于對教材基礎知識的掌握,是中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

對于直線m、n和平面α、β、γ,有如下五個命題:
①若m∥α,m⊥n,則n⊥α;
②若m⊥α,m⊥n,則n∥α;
③若α⊥β,γ⊥β,則α∥γ;
④若m⊥α,m∥n,n?β,則α⊥β;
⑤若α∩β=m,β∩γ=n,m∥n,則α∥γ;
其中正確的命題個數(shù)為( 。
A、0個B、1個C、2個D、3個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=x2(0<x<1)的圖象如圖所示,其在點M(t,f(t))處的切線為l,l與x軸和直線x=1分別交與點P、Q,點N(1,0),若△PQN的面積為S時點M恰好有兩個,則S的取值范圍為( 。
A、[
1
4
,
10
27
B、(
1
2
,
10
27
]
C、(
1
4
8
27
D、[
1
2
8
27

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列四個命題中,不正確的命題是( 。
A、如果一條直線與兩條平行直線中的一條垂直,那么也和另一條垂直
B、已知直線a、b、c,a∥b,c與a、b都不相交,若c與a所成的角為θ,則c與b所成的角也等于θ
C、如果空間四個點不共面,則四個點中可能有三個點共線
D、若直線a∥平面α,點P∈α,則過P作a的平行線一定在α內

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線C的方程為x2-
y2
3
=1,直線l是雙曲線C的右準線,F(xiàn)1、F2是雙曲線C的左、右焦點,點P在雙曲線C上,d為點P到直線l的距離,若|PF1|=2|PF2|2,則
|PF 1|
d
的值是( 。
A、2
B、
3
C、
17
-1
D、
17
+1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若點P在三個頂點坐標分別為C(0,0),A(0,2
3
),B(2,0)的△ABC內運動,則動點P到頂點A的距離|PA|<2
3
的概率為( 。
A、
3
6
B、
3
3
C、
3
6
π
D、
3
3
π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

數(shù)列{an}滿足an+1-an=2,a1=2,等比數(shù)列{bn}滿足.b1=a1,b4=a8
(Ⅰ)求數(shù)列{an},{bn}的通項公式;
(Ⅱ)設cn=an+bn,求數(shù)列{cn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}是首項為a(a≠0),公比為q的等比數(shù)列,設bn=an+1-an(n∈N*
(1)求數(shù)列{bn}的前n項和Tn;
(2)設cn=log4bn,數(shù)列{cn}的前n項和為Sn,若a=2,q=2,是否存在正正數(shù)k,使得
1
S1
+
1
S2
+…+
1
Sn
>k對任意正正數(shù)n恒成立?若存在,求出正整數(shù)k的值或范圍,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,四棱錐P-ABCD中,底面ABCD為平行四邊形,∠BAD=45°,AD=1,AB=
2
,△PAD是正三角形,平面PAD⊥平面PBD.
(Ⅰ)求證:PA⊥BD;
(Ⅱ)設二面角P-BD-A的大小為α,直線PA與平面PBC所成角的大小為β,求cos(α+β)的值.

查看答案和解析>>

同步練習冊答案