已知 設(shè)P:函數(shù)在R上單調(diào)遞減; Q:不等式的解集為R,若“P或Q”是真命題,“P且Q”是假命題,求的取值范圍.
[解題思路]:“P或Q”是真命題,“P且Q”是假命題,根據(jù)真假表知,P,Q之中一真一假,因此有兩種情況,要分類討論.
科目:高中數(shù)學(xué) 來源: 題型:
(本題滿分16分)
(文科學(xué)生做)已知命題p:函數(shù)在R上存在極值;
命題q:設(shè)A={x| x 2 + 2 x 3<0}, B={x| x 2 (a +1) x + a >0},若對,都有;
若為真,為假,試求實數(shù)a的取值范圍。
(理科學(xué)生做)已知命題p:對,函數(shù)有意義;
命題q:設(shè)A={x| x 2 + 2 x 3<0}, B={x| x 2 (a +1) x + a >0},若對,都有;
若為真,為假,試求實數(shù)a的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本題滿分16分)
(文科學(xué)生做)已知命題p:函數(shù)在R上存在極值;
命題q:設(shè)A={x| x 2 + 2 x 3<0}, B={x| x 2 (a +1) x + a >0},若對,都有;
若為真,為假,試求實數(shù)a的取值范圍。
(理科學(xué)生做)已知命題p:對,函數(shù)有意義;
命題q:設(shè)A={x| x 2 + 2 x 3<0}, B={x| x 2 (a +1) x + a >0},若對,都有;
若為真,為假,試求實數(shù)a的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知 設(shè)P:函數(shù)在R上單調(diào)遞減; Q:不等式的解集為R,若“P或Q”是真命題,“P且Q”是假命題,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010年福建省四地六校高二下學(xué)期第二次聯(lián)考數(shù)學(xué)(文科)試題 題型:解答題
(本小題滿分12分)已知,設(shè)P:函數(shù)在R上遞增,Q:復(fù)數(shù)Z=(-4) + i所對應(yīng)的點在第二象限。如果P且Q為假,P或Q為真,求的取值范圍。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com