解:(1)連結(jié)AC、BD,設(shè) 由P-ABCD與Q-ABCD都是正四棱錐, 所以PO⊥平面ABCD,QO⊥平面ABCD 從而P、O、Q三點在一條直線上, 所以PQ⊥平面ABCD。 (2)由題設(shè)知,ABCD是正方形, 所以AC⊥BD 由(1),QO⊥平面ABCD 故可分別以直線CA、DB、QP為x軸、y軸、z軸建立空間直角坐標(biāo)系(如圖), 由題條件,相關(guān)各點的坐標(biāo)分別是P(0,0,2),A(,0,0),Q(0,0,-2),B(0,,0) 所以, 于是 從而異面直線AQ與PB所成的角是。 |
|
(3)由(2),點D的坐標(biāo)是(0,-,0),,, 設(shè)是平面QAD的一個法向量, 由得 取x=1,得 所以點P到平面QAD的距離。 |
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年福建省福州三中高三(上)期中數(shù)學(xué)試卷(解析版) 題型:選擇題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2008年上海市奉賢區(qū)高考數(shù)學(xué)二模試卷(文科)(解析版) 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com