【題目】設(shè)F是橢圓Cab0)的一個焦點,P是橢圓C上的點,圓x2y2與線段PF交于A,B兩點,若AB三等分線段PF,則橢圓C的離心率為(

A.B.

C.D.

【答案】D

【解析】

取線段PF的中點H,連接OH,OA,由題意可得OHAB,設(shè)|OH|d,根據(jù)橢圓的定義以及在RtOHA中,可得a5d,在RtOHF中,利用勾股定理即可求解.

如圖,取線段PF的中點H,連接OH,OA.

設(shè)橢圓另一個焦點為E,連接PE.

AB三等分線段PF,∴H也是線段AB的中點,即OHAB.

設(shè)|OH|d,則|PE|2d,|PF|2a2d|AH|.

RtOHA中,|OA|2|OH|2|AH|2,解得a5d.

RtOHF中,|FH||OH|,|OF|c.

|OF|2|OH|2|FH|2,

化簡得17a225c2,.

即橢圓C的離心率為.

故選:D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列有關(guān)命題的說法錯誤的是(

A.“p∨q”為假命題,則pq均為假命題

B.“x=1”“x≥1”的充分不必要條件

C.“sinx=的必要不充分條件是“x=

D.若命題px0∈R,x02≥0,則命題¬px∈R,x20

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列五個命題:

①“”是“R上的增函數(shù)”的充分不必要條件;

②函數(shù)有兩個零點;

③集合A={2,3},B={1,23},從AB中各任意取一個數(shù),則這兩數(shù)之和等于4的概率是;

④動圓C即與定圓相外切,又與y軸相切,則圓心C的軌跡方程是

⑤若對任意的正數(shù)x,不等式 恒成立,則實數(shù)的取值范圍是

其中正確的命題序號是_____

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx)=a+bxaaba≠0),當(dāng)時,fx>0;當(dāng)時,fx<0

1)求fx)在內(nèi)的值域;

2)若方程有兩個不等實根,c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】是衡量空氣污染程度的一個指標(biāo),為了了解市空氣質(zhì)量情況,從年每天的值的數(shù)據(jù)中隨機抽取天的數(shù)據(jù),其頻率分布直方圖如圖所示.將值劃分成區(qū)間、、,分別稱為一級、二級、三級和四級,統(tǒng)計時用頻率估計概率 .

(1)根據(jù)年的數(shù)據(jù)估計該市在年中空氣質(zhì)量為一級的天數(shù);

(2)如果市對環(huán)境進行治理,經(jīng)治理后,每天近似滿足正態(tài)分布,求經(jīng)過治理后的值的均值下降率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線的參數(shù)方程為為參數(shù)),,為曲線上的一動點.

(I)求動點對應(yīng)的參數(shù)從變動到時,線段所掃過的圖形面積;

(Ⅱ)若直線與曲線的另一個交點為,是否存在點,使得為線段的中點?若存在,求出點坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)要完成下列三項抽樣調(diào)查:罐奶粉中抽取罐進行食品安全衛(wèi)生檢查;高二年級有名學(xué)生,為調(diào)查學(xué)生的學(xué)習(xí)情況抽取一個容量為的樣本;從某社區(qū)戶高收入家庭,戶中等收入家庭,戶低收入家庭中選出戶進行消費水平調(diào)查.以下各調(diào)查方法較為合理的是(

A.系統(tǒng)抽樣,簡單隨機抽樣,分層抽樣

B.簡單隨機抽樣,分層抽樣,系統(tǒng)抽樣

C.分層抽樣,系統(tǒng)抽樣,簡單隨機抽樣

D.簡單隨機抽樣,系統(tǒng)抽樣,分層抽樣

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】進入月份,香港大學(xué)自主招生開始報名,“五校聯(lián)盟”統(tǒng)一對五校高三學(xué)生進行綜合素質(zhì)測試,在所有參加測試的學(xué)生中隨機抽取了部分學(xué)生的成績,得到如圖所示的成績頻率分布直方圖:

(1)估計五校學(xué)生綜合素質(zhì)成績的平均值;

(2)某校決定從本校綜合素質(zhì)成績排名前名同學(xué)中,推薦人參加自主招生考試,若已知名同學(xué)中有名理科生,2名文科生,試求這3人中含文科生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是橢圓與雙曲線的公共焦點,是它們的一個公共點,且,橢圓的離心率為,雙曲線的離心率為,若,則的最小值為________.

查看答案和解析>>

同步練習(xí)冊答案