如圖,四邊形PDCE為矩形,ABCD為梯形,平面PDCE⊥平面ABCD,∠BAD=∠ADC=90°,AB=AD=.
(Ⅰ)若M為PA中點(diǎn),求證:AC∥平面MDE;
(Ⅱ)求平面PAD與PBC所成銳二面角的大小.
(Ⅰ) 參考解析;(Ⅱ) 60°
【解析】
試題分析:(Ⅰ)直線與平面平行的判定定理是在平面內(nèi)找一條直線與該直線平行,由于點(diǎn)M是PA的中點(diǎn),聯(lián)想到連結(jié)PC與ED它們的交點(diǎn)也是ED的中點(diǎn),所以可得MN∥AC.從而可得結(jié)論.本小題通過已知的中點(diǎn)利用三角形的中位線定理得到平行是解題的突破口.
試題解析:(1)證明:連接PC,交DE與N,連接MN,
在△PAC中,∵M,N分別為兩腰PA,PC的中點(diǎn)
∴MN∥AC, (2分)
又AC面MDE,MN?面MDE,
所以AC∥平面MDE. (4分)
(2)以D為空間坐標(biāo)系的原點(diǎn),分別以 DA,DC,DP所在直線為x,y,z軸建立空間直角坐標(biāo)系,
則P(0,0,a),B(a,a,0),C(0,2a,0),
所以,, (6分)
設(shè)平面PAD的單位法向量為,則可取 (7分)
設(shè)面PBC的法向量,
則有
即:,取=1,
則∴ (10分)
設(shè)平面PAD與平面PBC所成銳二面角的大小為θ,
(Ⅱ)因?yàn)榍笃矫?/span>PAD與PBC所成銳二面角的大小,如果做出二面角的平面角有一定的困難,可以延長CB與直線DA相交,從而取求解可以.本小題通過建立空間直角坐標(biāo)系來求解,求出兩個(gè)平面的法向量,再通過求出法向量的夾角從而得到二面角的大小.
∴ (11分)
∴θ=60°,所以平面PAD與平面PBC所成銳二面角的大小為60° (12分)
考點(diǎn):1.直線與平面的平行關(guān)系.2平面與平面的關(guān)系.3.三角形的中位線的知識(shí).4.空間直角坐標(biāo)系的公式.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
1 |
2 |
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
1 |
2 |
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:茂名一模 題型:解答題
1 |
2 |
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年山東省濟(jì)寧市魚臺(tái)一中高二(下)期中數(shù)學(xué)試卷(理科)(解析版) 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com