如圖,四邊形PDCE為矩形,ABCD為梯形,平面PDCE⊥平面ABCD,BAD=ADC=90°,AB=AD=.

()MPA中點(diǎn),求證:AC∥平面MDE;

()求平面PADPBC所成銳二面角的大小.

 

【答案】

() 參考解析;() 60°

【解析】

試題分析:()直線與平面平行的判定定理是在平面內(nèi)找一條直線與該直線平行,由于點(diǎn)MPA的中點(diǎn),聯(lián)想到連結(jié)PCED它們的交點(diǎn)也是ED的中點(diǎn),所以可得MNAC.從而可得結(jié)論.本小題通過已知的中點(diǎn)利用三角形的中位線定理得到平行是解題的突破口.

試題解析:1)證明:連接PC,交DEN,連接MN,

PAC中,M,N分別為兩腰PA,PC的中點(diǎn)

MNAC, (2分)

ACMDEMN?MDE,

所以AC平面MDE. (4分)

2)以D為空間坐標(biāo)系的原點(diǎn),分別以 DA,DC,DP所在直線為x,y,z軸建立空間直角坐標(biāo)系,

P0,0a),Baa,0),C0,2a,0),

所以,, (6分)

設(shè)平面PAD的單位法向量為,則可取7分)

設(shè)面PBC的法向量,

則有

即:,取=1,

10分)

設(shè)平面PAD與平面PBC所成銳二面角的大小為θ

()因?yàn)榍笃矫?/span>PADPBC所成銳二面角的大小,如果做出二面角的平面角有一定的困難,可以延長CB與直線DA相交,從而取求解可以.本小題通過建立空間直角坐標(biāo)系來求解,求出兩個(gè)平面的法向量,再通過求出法向量的夾角從而得到二面角的大小.

11分)

θ=60°,所以平面PAD與平面PBC所成銳二面角的大小為60° 12分)

考點(diǎn):1.直線與平面的平行關(guān)系.2平面與平面的關(guān)系.3.三角形的中位線的知識(shí).4.空間直角坐標(biāo)系的公式.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四邊形PDCE為矩形,ABCD為梯形,平面PDCE⊥平面ABCD,∠BAD=∠ADC=90°,AB=AD=
1
2
CD=a,PD=
2
a.
(Ⅰ)若M為PA的中點(diǎn),求證AC∥平面MDE;
(Ⅱ)求三棱錐A-MDE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,四邊形PDCE為矩形,四邊形ABCD為梯形,平面PDCE⊥平面ABCD,∠BAD=∠ADC=90°,AB=AD=
1
2
CD=a,PD=
2
a.
(1)若M為PA中點(diǎn),求證:AC∥平面MDE;
(2)求平面PAD與PBC所成銳二面角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:茂名一模 題型:解答題

如圖,四邊形PDCE為矩形,四邊形ABCD為梯形,平面PDCE⊥平面ABCD,∠BAD=∠ADC=90°,AB=AD=
1
2
CD=a,PD=
2
a.
(1)若M為PA中點(diǎn),求證:AC平面MDE;
(2)求平面PAD與PBC所成銳二面角的大小.
精英家教網(wǎng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年山東省濟(jì)寧市魚臺(tái)一中高二(下)期中數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

如圖,四邊形PDCE為矩形,四邊形ABCD為梯形,平面PDCE⊥平面ABCD,∠BAD=∠ADC=90°,AB=AD=CD=a,PD=a.
(1)若M為PA中點(diǎn),求證:AC∥平面MDE;
(2)求平面PAD與PBC所成銳二面角的大。

查看答案和解析>>

同步練習(xí)冊答案