8.已知點(diǎn)M(3,-1)繞原點(diǎn)按逆時(shí)針旋轉(zhuǎn)90°后,且在矩陣A=$[{\begin{array}{l}a&0\\ 2&b\end{array}}]$對(duì)應(yīng)的變換作用下,得到點(diǎn)N (3,5),求a,b的值.

分析 求出繞原點(diǎn)按逆時(shí)針旋轉(zhuǎn)90°的變換矩陣,再利用矩陣的乘法,列方程,即可得出結(jié)論.

解答 解:繞原點(diǎn)按逆時(shí)針旋轉(zhuǎn)90°的變換矩陣為M=$[\begin{array}{l}{0}&{-1}\\{1}&{0}\end{array}]$,
∴$[{\begin{array}{l}a&0\\ 2&b\end{array}}]$$[\begin{array}{l}{0}&{-1}\\{1}&{0}\end{array}]$=$[\begin{array}{l}{0}&{-a}\\&{-2}\end{array}]$,
$[\begin{array}{l}{0}&{-a}\\&{-2}\end{array}]$$[\begin{array}{l}{3}\\{-1}\end{array}]$=$[\begin{array}{l}{3}\\{5}\end{array}]$,
∴$\left\{\begin{array}{l}{a=3}\\{3b+2=5}\end{array}\right.$,
∴$\left\{\begin{array}{l}{a=3}\\{b=1}\end{array}\right.$,
∴a=3,b=1.

點(diǎn)評(píng) 本題考查幾種特殊的矩陣變換,考查矩陣的乘法,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知f(x)=x+$\frac{x}$在(1,e)上為增函數(shù),則實(shí)數(shù)b的取值范圍是( 。
A.(-∞,1]∪[e2,+∞)B.(-∞,0]∪[e2,+∞)C.(-∞,1]D.[1,e2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=1+\frac{\sqrt{2}}{2}t}\\{y=2+\frac{\sqrt{2}}{2}t}\end{array}\right.$(t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸,建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρ=4sinθ.
(I)寫出直線l的普通方程和曲線C2的直角坐標(biāo)方程;
(II)直線l與曲線C2交于A、B兩點(diǎn),求|AB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知函數(shù)f(x)=x3+ax.
(Ⅰ)當(dāng)x=1時(shí),f(x)=x3+ax有極小值,求a的值;
(Ⅱ)若過(guò)點(diǎn)P(1,1)只有一條直線與曲線y=f(x)相切,求a的取值范圍;
(Ⅲ)在(Ⅰ)的條件下,判斷過(guò)點(diǎn)A(0,3),B(2,0),C(-2,-2)分別存在幾條直線與曲線y=f(x)相切.(只需寫出結(jié)論)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知在等差數(shù)列{an}中,a1=3,前n項(xiàng)和為Sn,等比數(shù)列{bn}各項(xiàng)均為正數(shù),b1=1,b2+S2=12,{bn}的公比q=$\frac{S_2}{b_2}$.
(1)求an與bn;
(2)求$\frac{1}{S_1}$+$\frac{1}{S_2}$+…+$\frac{1}{S_n}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知函數(shù)f(x)=x3+2bx2+cx-2的圖象在與x軸交點(diǎn)處切線方程是y=5x-10
(1)求函數(shù)f(x)的解析式;
(2)設(shè)函數(shù)g(x)=f(x)+$\frac{1}{3}$mx,若函數(shù)g(x)存在極值,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.如圖,已知矩形ABCD,AD=2,E為AB邊上的點(diǎn),現(xiàn)將△ADE沿DE翻折至△ADE,使得點(diǎn)A'在平面EBCD上的投影在CD上,且直線A'D與平面EBCD所成角為30°,則線段AE的長(zhǎng)為$\frac{4\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.某高中學(xué)校共有學(xué)生1800名,各年級(jí)男女學(xué)生人數(shù)如表.已知在全校學(xué)生中隨機(jī)抽取1名,抽到高二女生的概率是0.16.
高一年級(jí)高二年級(jí)高三年級(jí)
女生324x280
男生316312y
現(xiàn)用分層抽樣的方法,在全校抽取45名學(xué)生,則應(yīng)在高三抽取的學(xué)生人數(shù)為14.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知橢圓方程為$\frac{{y}^{2}}{{a}^{2}}$+$\frac{{x}^{2}}{^{2}}$=1(a>b>0),其下焦點(diǎn)F1與拋物線x2=-4y的焦點(diǎn)重合,離心率e=$\frac{\sqrt{2}}{2}$,過(guò)F1的直線l與橢圓交于A、B兩點(diǎn),
(1)求橢圓的方程;
(2)求過(guò)點(diǎn)O、F1(其中O為坐標(biāo)原點(diǎn)),且與直線y=-$\frac{{a}^{2}}{c}$(其中c為橢圓半焦距)相切的圓的方程;
(3)求$\overrightarrow{{F}_{2}A}$•$\overrightarrow{{F}_{2}B}$=$\frac{5}{4}$時(shí),直線l的方程,并求當(dāng)斜率大于0時(shí)的直線l被(2)中的圓(圓心在第四象限)所截得的弦長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案