精英家教網 > 高中數學 > 題目詳情
設函數f(x)=|2x+1|-|x-4|.則不等式f(x)>2的解集為
 
考點:帶絕對值的函數
專題:函數的性質及應用
分析:化簡函數f(x)的解析式,分類討論求得不等式f(x)>2的解集.
解答: 解:f(x)=|2x+1|-|x-4|=
-x-5,x<-
1
2
3-3,-
1
2
≤x≤4
x+5,x>4
,
所以,當x<-
1
2
時,f(x)>2?-x-5>2,∴x<-7;
-
1
2
≤x≤4時,f(x)>2?3x-3>2,∴
5
3
<x≤4;
當x>4時,f(x)>2?x+5>2,∴x>4;
綜上所述,不等式f(x)>2的解集為{x|x<-7或x>
5
3
},
故答案為:{x|x<-7或x>
5
3
}.
點評:本題主要考查絕對值不等式的解法,體現了轉化、分類討論的數學思想,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知f(x)為偶函數,當x≥0時,f(x)=
cosπx,x∈[0,
1
2
]
2x-1,x∈(
1
2
,+∞)
,則不等式f(x)≤
1
2
的解集為(  )
A、[-
3
4
,-
2
3
]∪[
2
3
3
4
]
B、[-
3
4
,-
1
3
]∪[
1
3
,
3
4
]
C、[-
7
4
,-
1
3
]∪[
1
3
,
7
4
]
D、[
1
4
,
2
3
]∪[
4
3
7
4
]

查看答案和解析>>

科目:高中數學 來源: 題型:

求函數y=2sin(
π
3
-x)+sin(
π
6
+x)的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

下列函數中,值域為(0,+∞)的是( 。
A、y=
x2-2x+1
B、y=
x+2
x+1
  (x∈(0,+∞))
C、y=
1
x2+2x+1
  (x∈N)
D、y=
1
|x+1|

查看答案和解析>>

科目:高中數學 來源: 題型:

出租車的收費標準:當行程不超過2km時,收費6元;行程超過2km,但不超過10km時,在收費6元的基礎上,超過2km部分每公里收費0.2元;超過10km時,超過部分除每公里收費0.2元之外,再加收50%的回程空駛費.
(1)試建立一個出租車收費y(元)與行程x(公里)之間的函數解析式;
(2)從步行街到你家,花費了你14元,那步行街到你家的距離在什么范圍內?

查看答案和解析>>

科目:高中數學 來源: 題型:

已知
1
a
,
1
b
,
1
c
是等差數列,求證:
b+c-a
a
,
a+c-b
b
,
a+b-c
c
也是等差數列.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=-
2
x
,若
(1)x∈(4,+∞),求值域;
(2)x∈(0,6),求值域.

查看答案和解析>>

科目:高中數學 來源: 題型:

化簡:
a
-
b
4a
-
4b
(a>0,b>0).

查看答案和解析>>

科目:高中數學 來源: 題型:

設二項式(3
3x
+
1
x
n的展開式的各項系數的和為p,所有二項式系數的和為S.若p+S=272,則n等于(  )
A、4B、5C、6D、8

查看答案和解析>>

同步練習冊答案