【題目】為了解少年兒童的肥胖是否與常喝碳酸飲料有關(guān),現(xiàn)對名小學六年級學生進行了問卷調(diào)查,并得到如下列聯(lián)表.平均每天喝以上為“常喝”,體重超過為“肥胖”.

常喝

不常喝

合計

肥胖

2

不肥胖

18

合計

30

已知在全部人中隨機抽取人,抽到肥胖的學生的概率為

(1)請將上面的列聯(lián)表補充完整;

(2)是否有的把握認為肥胖與常喝碳酸飲料有關(guān)?請說明你的理由;

(3)已知常喝碳酸飲料且肥胖的學生中恰有2名女生,現(xiàn)從常喝碳酸飲料且肥胖的學生中隨機抽取2人參加一個有關(guān)健康飲食的電視節(jié)目,求恰好抽到一名男生和一名女生的概率.

附:

【答案】(1)見解析(2)見解析(3)

【解析】

(1)由題意結(jié)合古典概型求得肥胖學生的人數(shù),然后完成列聯(lián)表即可;

(2)由題意計算的觀測值,然后結(jié)合獨立性檢驗的結(jié)論可知有99.5%的把握認為肥胖與常喝碳酸飲料有關(guān).

(3)列出所有可能的事件,結(jié)合古典概型計算公式求解恰好抽到一名男生和一名女生的概率即可.

(1)設(shè)全部30人中的肥胖學生共,,解得.∴常喝碳酸飲料且肥胖的學生有6.列聯(lián)表如下:

常喝

不常喝

合計

肥胖

6

2

8

不肥胖

4

18

22

合計

10

20

30

(2)有;

理由:由已知數(shù)據(jù)可求得,因此有99.5%的把握認為肥胖與常喝碳酸飲料有關(guān).

(3)根據(jù)題意,可設(shè)常喝碳酸飲料的肥胖男生為,女生為,則任取兩人, 可能的結(jié)果有 15,其中一男一女有, 8.故正好抽到一男一女的概率為

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓 )的左焦點為,離心率為

(Ⅰ)求橢圓的標準方程;

(Ⅱ)設(shè)為坐標原點, 為直線上一點,過的垂線交橢圓于, .當四邊形是平行四邊形時,求四邊形的面積。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某大學生在開學季準備銷售一種文具套盒進行試創(chuàng)業(yè),在一個開學季內(nèi),每售出盒該產(chǎn)品獲利潤元;未售出的產(chǎn)品,每盒虧損.根據(jù)歷史資料,得到開學季市場需求量的頻率分布直方圖,如圖所示。該同學為這個開學季購進了盒該產(chǎn)品,以(單位:盒,)表示這個開學季內(nèi)的市場需求量,(單位:元)表示這個開學季內(nèi)經(jīng)銷該產(chǎn)品的利潤。

(1)求市場需求量在[100,120]的概率;

(2)根據(jù)直方圖估計這個開學季內(nèi)市場需求量的中位數(shù);

(3)將表示為的函數(shù),并根據(jù)直方圖估計利潤不少于元的概率。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù))的部分圖象如圖所示,下列說法正確的是( )

A. 的圖象關(guān)于直線對稱

B. 的圖象關(guān)于點對稱

C. 將函數(shù)的圖象向左平移個單位得到函數(shù)的圖象

D. 若方程上有兩個不相等的實數(shù)根,則實數(shù)的取值范圍是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}的前n項和為Sn , 滿足a1= +3.
(1)證明:{an+1}是等比數(shù)列;
(2)求數(shù)列{an}的前n項和為Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè):實數(shù)滿足,其中;:實數(shù)滿足.

(1),且為真,為假,求實數(shù)的取值范圍;

(2)的充分不必要條件,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,AB為⊙O的直徑,過點B作⊙O的切線BC,OC交⊙O于點E,AE的延長線交BC于點D.

(1)求證:CE2=CDCB.
(2)若AB=2,BC= ,求CE與CD的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對于函數(shù)fx)=(|x﹣2|+1)4,給出如下三個命題:①fx+2)是偶函數(shù);②fx)在區(qū)間(﹣∞,2)上是減函數(shù),在區(qū)間(2,+∞)上是增函數(shù);③fx)沒有最小值.其中正確的個數(shù)為( 。

A. 1 B. 2 C. 3 D. 0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知等差數(shù)列的前項和為,等比數(shù)列的前項和為,,.

(1),求的通項公式;

(2),.

【答案】(1);(2)21或.

【解析】試題分析:(1)設(shè)等差數(shù)列公差為,等比數(shù)列公比為,由已知條件求出,再寫出通項公式;(2)由,求出的值,再求出的值,求出

試題解析:設(shè)等差數(shù)列公差為,等比數(shù)列公比為,即.

(1)∵,結(jié)合

.

(2)∵,解得或3,

時,,此時;

時,,此時.

型】解答
結(jié)束】
20

【題目】如圖,已知直線與拋物線相交于兩點, ,且點的坐標為.

1的值;

2為拋物線的焦點, 為拋物線上任一點,的最小值.

查看答案和解析>>

同步練習冊答案