已知橢圓的上頂點(diǎn)為A,左右焦點(diǎn)分別為F1、F2,直線AF2與圓M:x2+y2-6x-2y+7=0相切.
(Ⅰ)求橢圓的方程;
(Ⅱ)若橢圓C內(nèi)的動(dòng)點(diǎn)P,使|PF1|,|PO|,|PF2|成等比數(shù)列(O為坐標(biāo)原點(diǎn),)求的取值范圍.
【答案】分析:(Ⅰ)先求出圓的標(biāo)準(zhǔn)方程以及直線AF2與的方程,利用圓心到直線的距離等于半徑即可求出對(duì)應(yīng)的橢圓的方程;
(Ⅱ)先利用|PF1|,|PO|,|PF2|成等比數(shù)列求出點(diǎn)P的坐標(biāo)滿足的等量關(guān)系,再代入借助于點(diǎn)P在橢圓內(nèi)就可求出的取值范圍.
解答:解:(1)將圓M:x2+y2-6x-2y+7=0化為標(biāo)準(zhǔn)方程(x-3)2+(y-1)2=3,
圓M的圓心為M(3,1),半徑為r=,(2分)
得直線AF2+y=1,即x+cy-c=0(3分)
直線AF2與圓M:相切得(舍去)(5分)
當(dāng)c=時(shí),a2=c2+1=3,故橢圓C的方程為=1(6分)
(2)由(1)得,,設(shè)P(x,y),
由題意得|PO|2=|PF1||PF2|,即=
化簡(jiǎn)得:x2-y2=1   (9分)
-3(10分)
∵點(diǎn)P為橢圓內(nèi)的動(dòng)點(diǎn),∴1≤x2(12分)
∴-1≤<0(13分)
點(diǎn)評(píng):本題是對(duì)圓與橢圓知識(shí)的綜合考查.當(dāng)直線與圓相切時(shí),可以利用圓心到直線的距離等于半徑求解.,也可以把直線與圓的方程聯(lián)立讓對(duì)應(yīng)方程的判別式為0求解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本小題滿分13分)

       已知橢圓的上頂點(diǎn)為A,左右焦點(diǎn)分別為F1、F2,直線AF2與圓相切。

   (Ⅰ)求橢圓的方程;

   (Ⅱ)若橢圓C內(nèi)的動(dòng)點(diǎn)P,使成等比數(shù)列(O為坐標(biāo)原點(diǎn),)求 的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本小題滿分13分)

           已知橢圓的上頂點(diǎn)為A,左右焦點(diǎn)分別為F1、F2,直線AF2與圓相切。

   (Ⅰ)求橢圓的方程;

   (Ⅱ)若橢圓C內(nèi)的動(dòng)點(diǎn)P,使成等比數(shù)列(O為坐標(biāo)原點(diǎn),)求 的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓數(shù)學(xué)公式的上頂點(diǎn)為A(0,1),過(guò)C1的焦點(diǎn)且垂直長(zhǎng)軸的弦長(zhǎng)軸的弦長(zhǎng)為1.
(1)求橢圓C1的方程;
(2)設(shè)圓O:數(shù)學(xué)公式,過(guò)該圓上任意一點(diǎn)作圓的切線l,試證明l和橢圓C1恒有兩個(gè)交點(diǎn)A,B,且有數(shù)學(xué)公式
(3)在(2)的條件下求弦AB長(zhǎng)度的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012年江蘇省蘇錫常鎮(zhèn)四市高考數(shù)學(xué)一模試卷(解析版) 題型:解答題

如圖,已知橢圓的上頂點(diǎn)為A,直線y=-4交橢圓E于點(diǎn)B,C(點(diǎn)B在點(diǎn)C的左側(cè)),點(diǎn)P在橢圓E上.
(1)若點(diǎn)P的坐標(biāo)為(6,4),求四邊形ABCP的面積;
(2)若四邊形ABCP為梯形,求點(diǎn)P的坐標(biāo);
(3)若(m,n為實(shí)數(shù)),求m+n的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2009-2010學(xué)年廣東省中山市紀(jì)念中學(xué)、深圳市外國(guó)語(yǔ)學(xué)校、廣州市執(zhí)信中學(xué)高三聯(lián)考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知橢圓的上頂點(diǎn)為A(0,1),過(guò)C1的焦點(diǎn)且垂直長(zhǎng)軸的弦長(zhǎng)軸的弦長(zhǎng)為1.
(1)求橢圓C1的方程;
(2)設(shè)圓O:,過(guò)該圓上任意一點(diǎn)作圓的切線l,試證明l和橢圓C1恒有兩個(gè)交點(diǎn)A,B,且有
(3)在(2)的條件下求弦AB長(zhǎng)度的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案