【題目】在四棱錐中,平面平面,四邊形為直角梯形,∥,,,,,為的中點.
(1)求證:∥平面;
(2)若點在線段上,滿足,求直線與平面所成角的正弦值.
【答案】(1)證明見解析;(2)
【解析】
(1)證法1:要證明線面平行,轉(zhuǎn)化為證明線線平行,取中點,連接,,證明;證法2:要證明線面平行轉(zhuǎn)化為證明面面平行,取中點,連接,,轉(zhuǎn)化為平面平面;(2)取中點,連接、,易得,平面,以為坐標(biāo)原點,、、所在直線分別為軸、軸、軸建立空間直角坐標(biāo)系,求平面的法向量,利用公式求線面角的正弦值.
(Ⅰ)證法1:取中點,連接,.
為中點,,且.
又,且,,且,
四邊形為平行四邊形,,
又平面,平面,
平面;
證法2: 取中點,連接,.
為中點,,
又平面,平面,
平面.
又且,
四邊形為平行四邊形,,
又平面,平面,
平面,又,
平面平面,又平面,
平面;
(Ⅱ)取中點,連接、,.
,.
又平面平面,且平面平面,
平面,平面,
以為坐標(biāo)原點,、、所在直線分別為軸、軸、
軸建立空間直角坐標(biāo)系,如圖所示,
,,
,,
,
設(shè)平面的法向量,
則,,
得,取,則,
設(shè)與平面所成的角為,
,
與平面所成的角的正弦值為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】江蘇省高郵市素有“魚米之鄉(xiāng)”之稱,高郵城西有風(fēng)光秀麗的高郵湖,湖內(nèi)盛產(chǎn)花鰱魚,記花鰱魚在湖中的游速為,花鰱魚在湖中的耗氧量的單位數(shù)為,經(jīng)研究花鰱魚的游速與成正比,經(jīng)測定,當(dāng)花鰱魚的耗氧量為200單位時,其游速為.
(1)求關(guān)于的函數(shù)關(guān)系式
(2)計算花鰱魚靜止時耗氧量的單位數(shù).
(3)如果某條花鰱魚的游速提高了1,那么它的耗氧量的單位數(shù)是原來的多少倍?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對兩個變量y和x進(jìn)行回歸分析,則下列說法中不正確的是( )
A.由樣本數(shù)據(jù)得到的回歸方程必過樣本點的中心.
B.殘差平方和越小的模型,擬合的效果越好.
C.用相關(guān)指數(shù)來刻畫回歸效果,的值越小,說明模型的擬合效果越好.
D.回歸分析是對具有相關(guān)關(guān)系的兩個變量進(jìn)行統(tǒng)計分析的一種常用方法.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(是常數(shù)).
(1)若,求函數(shù)的值域;
(2)若為奇函數(shù),求實數(shù).并證明的圖像始終在的圖像的下方;
(3)設(shè)函數(shù),若對任意,以為邊長總可以構(gòu)成三角形,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù),其中,.
(1)若為定值,求的最大值;
(2)求證:對任意,有 ;
(3)若,,求證:對任意,直線與曲線有唯一公共點.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:的焦距為,且橢圓過點,直線與圓: 相切,且與橢圓相交于兩點.
(1)求橢圓的方程;
(2)求三角形面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從某企業(yè)生產(chǎn)的某種產(chǎn)品中抽取100件,測量這些產(chǎn)品的一項質(zhì)量指標(biāo)值,由測量表得如下頻數(shù)分布表:
質(zhì)量指標(biāo)值分組 | [75,85) | [85,95) | [95,105) | [105,115) | [115,125) |
頻數(shù) | 6 | 26 | 38 | 22 | 8 |
(I)在答題卡上作出這些數(shù)據(jù)的頻率分布直方圖:
(II)估計這種產(chǎn)品質(zhì)量指標(biāo)值的平均數(shù)及方差(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);
(III)根據(jù)以上抽樣調(diào)查數(shù)據(jù),能否認(rèn)為該企業(yè)生產(chǎn)的這種產(chǎn)品符合“質(zhì)量指標(biāo)值不低于95的產(chǎn)品至少要占全部產(chǎn)品的80%”的規(guī)定?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),直線.
(Ⅰ)求函數(shù)的極值;
(Ⅱ)求證:對于任意,直線都不是曲線的切線;
(Ⅲ)試確定曲線與直線的交點個數(shù),并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市工業(yè)部門計劃對所轄中小型企業(yè)推行節(jié)能降耗技術(shù)改造,下面是對所轄企業(yè)是否支持技術(shù)改造進(jìn)行的問卷調(diào)查的結(jié)果:
支持 | 不支持 | 合計 | |
中型企業(yè) | 40 | ||
小型企業(yè) | 240 | ||
合計 | 560 |
已知從這560家企業(yè)中隨機(jī)抽取1家,抽到支持技術(shù)改造的企業(yè)的概率為.
(1)能否在犯錯誤的概率不超過0.025的前提下認(rèn)為“是否支持節(jié)能降耗技術(shù)改造”與“企業(yè)規(guī)模”有關(guān)?
(2)從支持節(jié)能降耗的中小企業(yè)中按分層抽樣的方法抽出8家企業(yè),然后從這8家企業(yè)選出2家進(jìn)行獎勵,分別獎勵中型企業(yè)20萬元,小型企業(yè)10萬元.求獎勵總金額為20萬元的概率.
附:
0.05 | 0.025 | 0.01 | |
3.841 | 5.024 | 6.635 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com