分析 (1)移項化簡不等式,即可解不等式;
(2)從不等式的左邊入手,左邊對應的代數(shù)式的二倍,分別寫成兩兩相加的形式,在三組相加的式子中分別用均值不等式,整理成最簡形式,得到右邊的2倍,兩邊同時除以2,得到結果.
解答 (1)解:∵$\frac{x+2}{2-3x}$>1,
∴$\frac{4x}{2-3x}$>0,
∴0<x<$\frac{2}{3}$
∴不等式的解集為$(0,\frac{2}{3})$;
(2)證明:∵a2+b2+c2
=$\frac{1}{2}$(a2+b2+c2+a2+b2+c2)≥$\frac{1}{2}$(2ab+2ca+2bc)=ab+bc+ca.
∴a2+b2+c2≥ab+bc+ca.
點評 本題考查解解不等式,考查均值不等式的應用,考查不等式的證明方法,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{\sqrt{3}}{2}$π | B. | $\frac{3}{2}$π | C. | $\sqrt{3}$π | D. | 12π |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | a>0,c>0 | B. | a>0,c<0 | C. | a<0,c>0 | D. | a<0,c<0 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (2,+∞) | B. | (-∞,0)∪(2,+∞) | C. | (-∞,1]∪(2,+∞) | D. | (-∞,0) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\sqrt{2}$-1 | B. | $\sqrt{2}$ | C. | 0 | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | sinx+ex | B. | cosx+ex | C. | -sinx+ex | D. | -cosx+ex |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 直角三角形 | B. | 等腰三角形 | C. | 銳角三角形 | D. | 鈍角三角形 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com