A. | $(0,\frac{π}{6}]$ | B. | $[\frac{π}{3},\frac{π}{2}]$ | C. | $(0,\frac{π}{3}]$ | D. | $[\frac{π}{3},π)$ |
分析 先利用正弦定理把不等式中正弦的值轉(zhuǎn)化成邊,進而代入到余弦定理公式中求得cosA的范圍,進而求得A的范圍.
解答 解:sin2(B+C)+cos2B+cos2C+sinBsinC≥2⇒sin2A≤sin2B+sin2C-sinBsinC,
由正弦定理可知a=2RsinA,b=2RsinB,c=2RsinC,
∵sin2A≤sin2B+sin2C-sinBsinC,
∴a2≤b2+c2-bc,
∴bc≤b2+c2-a2
∴cosA=$\frac{^{2}+{c}^{2}-{a}^{2}}{2bc}$≥$\frac{1}{2}$,
∴A≤$\frac{π}{3}$,
∵A>0,
∴A的取值范圍是(0,$\frac{π}{3}$]
故選:C.
點評 本題主要考查了正弦定理和余弦定理的應(yīng)用.作為解三角形中常用的兩個定理,考生應(yīng)能熟練記憶.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,$\frac{3}{4}$) | B. | ($\frac{1}{2}$,$\frac{3}{4}$) | C. | (0,$\frac{1}{2}$) | D. | [$\frac{3}{4}$,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 直線 | B. | 橢圓 | C. | 拋物線 | D. | 雙曲線 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | $\sqrt{3}$ | C. | $\frac{{\sqrt{2}}}{2}$ | D. | $\frac{3}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2-i | B. | 2+i | C. | 4-i | D. | 4+i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分而不必要條件 | B. | 必要而不充分條件 | ||
C. | 充分必要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com