15.完成下面問題:
(1)求直線2x+5y-20=0分別在x軸、y軸上的截距;
(2)求平行于直線x-y+2=0,且與它的距離為$\sqrt{2}$的直線的方程;
(3)已知兩點M(7,-1),N(-5,4),求線段MN的垂直平分線的方程.

分析 (1)直接利用直線的一般式方程轉(zhuǎn)化為求截距式方程,然后求解在x軸、y軸上的截距;
(2)設(shè)出平行于直線x-y+2=0的直線方程,利用與它的距離為$\sqrt{2}$,求解直線的方程;
(3)求出直線的斜率,中點坐標,利用點斜式求解即可.

解答 (本小題滿分12分)
解:(1)將2x+5y-20=0化為截距式$\frac{x}{10}$+$\frac{y}{4}$=1
由此可知此直線在x軸、y軸上的截距分別為10與4
(或直接令x=0,y=0得截距)-------------------------------------(4分)
(2)因為所求直線平行于直線x-y+2=0
所以可設(shè)所求直線方程為x-y+c=0
這兩條直線間的距離
d=$\frac{|c-2|}{\sqrt{12+(-1)2}}$=$\sqrt{2}$
解c=0或c=4
直線方程為x-y=0或x-y+4=0-----------------------(8分)
(3)直線MN的斜率kMN=$\frac{4-(-1)}{-5-7}$=-$\frac{5}{12}$
MN的垂直平分線的斜率k=-$\frac{1}{kMN}$=$\frac{12}{5}$
MN的中點坐標(1,$\frac{3}{2}$)
所以線段MN的垂直平分線的方程為y-$\frac{3}{2}$=$\frac{12}{5}$(x-1)
整理得24x-10y-9=0------------------------------------------------(12分)

點評 本題考查直線方程的求法與應(yīng)用,是基本知識的考查.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.橢圓6x2+y2=6的長軸端點坐標為(  )
A.(-1,0),(1,0)B.(-6,0),(6,0)C.$(-\sqrt{6},0),(\sqrt{6},0)$D.$(0,-\sqrt{6}),(0,\sqrt{6})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知函數(shù)f(x)的定義域為D,若對于任意的x1,x2∈D,當x1<x2時,都有f(x1)≤f(x2),則稱函數(shù)f(x)在D上為非減函數(shù).設(shè)f(x)在[0,1]上為非減函數(shù),且滿足以下三個條件:
(1)f(0)=0;(2)f(${\frac{x}{3}}$)=$\frac{1}{2}$f(x);
(3)f(1-x)=1-f(x).
則f(1)+f(${\frac{1}{2}}$)+f(${\frac{1}{3}}$)+f(${\frac{1}{6}}$)+f(${\frac{1}{7}}$)+f(${\frac{1}{8}}$)=$\frac{11}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖,棱長為a的正方體ABCD-A1B1C1D1中,點M,N,E分別是棱A1B1,A1D1,C1D1的中點.
(1)過AM作一平面,使其與平面END平行(只寫作法,不需要證明);
(2)在如圖的空間直角坐標系中,求直線AM與平面BMND所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.寫出命題:“若一個四邊形兩組對邊相等,則這個四邊形為平行四邊形”的逆否命題是若一個四邊形不是平行四邊形,則這個四邊形的兩組對邊不都相等.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.以下說法正確的有( 。
(1)y=x+$\frac{1}{x}$(x∈R)最小值為2;
(2)a2+b2≥2ab對a,b∈R恒成立;
(3)a>b>0且c>d>0,則必有ac>bd;
(4)命題“?x∈R,使得x2+x+1≥0”的否定是“?x∈R,使得x2+x+1≥0”;
(5)實數(shù)x>y是$\frac{1}{x}$<$\frac{1}{y}$成立的充要條件;
(6)設(shè)p,q為簡單命題,若“p∨q”為假命題,則“¬p∨¬q”也為假命題.
A.2個B.3個C.4個D.5個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知函數(shù)f(x)的定義域為[-1,5],部分對應(yīng)值如表,f(x)的導(dǎo)函數(shù)y=f′(x)的圖象如圖所示,下列關(guān)于函數(shù)f(x)的命題:
x-1045
f(x)1221
(1)函數(shù)y=f(x)是周期函數(shù);
(2)函數(shù)f(x)在(0,2)上是減函數(shù);
(3)如果當x∈[-1,t]時,f(x)的最大值是2,那么t的最大值為4;
(4)當1<a<2時,函數(shù)y=f(x)-a有4個零點.
其中真命題的個數(shù)有(  )
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知曲線C1:(x-1)2+y2=1與曲線C2:y(y-mx-m)=0,則曲線C2恒過定點(-1,0);若曲線C1與曲線C2有4個不同的交點,則實數(shù)m的取值范圍是(-$\frac{\sqrt{3}}{3}$,0)
∪(0,$\frac{\sqrt{3}}{3}$) 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.設(shè)定義在R上的函數(shù)f(x)對任意實數(shù)x,y,滿足f(x)+f(y)=f(x+y),且f(3)=4,則f(0)+f(-3)的值為(  )
A.-2B.-4C.0D.4

查看答案和解析>>

同步練習冊答案